3DST-S in DUNE near detector concept

S. Manly University of Rochester LBNC Meeting, Fermilab June 4, 2019

Overview of 3DST-S

The target is CH, i.e., not argon. Some of you noticed this ©.

> Complementary to the Ar parts of the detector

Electron and radiated/converted photon

June 2019

Overview of 3DST-S

Overarching requirements - from H. Tanaka's talk earlier today

> Not used to tune or constrain model used in oscillation analysis (use Ar for that). Provides information useful for development of model.

3DST-S capabilities added to ND:

- Beam spectrum/direction monitoring on axis
- Ability to detect neutrons and measure energy
 - Feeds into energy resolution of beam spectrum, flux determination (particularly anti-nu)
 - improvements of interaction model

... also contributes to robustness of experiment

From DUNE/LBNF Global Science Requirements

O0 Predict the neutrino spectrum at the FD: The ND must provide a prediction for the energy s

provided as a function of the oscillation parameter achieve the required CP coverage. This is the primary

Glo-sci-22: The beam monitoring systems shall have sufficient energy and spatial and temporal resolution that when combined with the detailed knowledge of the beam line geometry, a timely (few hours) feedback of beam performance, stability, as well as a data-driven estimate of the neutrino flux will be obtained.

June 2019

- DUNE aims to measure CP violation via spectral distortion
- 3DST-S provides dedicated on-axis beam spectrum measurement
- Important when PRISM implemented, which introduces flux changes in Ar components of ND

3DST-S stays on axis

Stuff can happen

Neutrino Energy [GeV]

3DST-S

M. Bishai, NuFACT 2018

Can produce spectral wiggles (not just a rate issue) → Bad

Stuff has happened

Target damage model in FLUKA08

Broken upstream

target fins

A. Holin, CERN CENF-ND meeting, Nov 2017

tilt discovered by change in ND flux (due to corroded part)

Unexpected horn

Jim Hylen, NuMI OPS, Nov 2016

MINERvA's "*&^% medium energy flux wiggle" saga

2.4x2.4x2 m³ 3DST-S beam center to 11 cm 2.5 days of running

Shape pull in muon energy or neutrino energy spectrum for 1 week of running

Stat. Error and detector effect (smearing + efficiency applied)

Stuff will happen

- Monitoring the stability of the LBNF flux and energy spectrum at the ND crucial to achieving goals.
- Muon monitor capabilities limited by removal of low energy muons due to sculpting by hadron absorber at end of beam pipe.
- Changes in on-axis energy spectrum likely to be only indication of certain problems such as shifts in horn position, miscalibrations of currents, changing target density, etc..
- > Total rate much less sensitive to changes.
- Fiffects of problems typically large on-axis and die out off-axis (NOvA ND data relatively insensitive to things picked up on-axis).
- Common for beam parameters to change, particularly after long downtimes.

Paraphrased from a few paragraphs written by Laura Fields and Zarko Pavlovic in response to LBNC ND exec. summary feedback last week

Neutrons and 3DST-S

DUNE ND design aims to see and use things invisible to past neutrino experiments:
Low momentum pions & protons, and neutrons

- ➢ 3DST
 - Highly granular 3D capability
 - Very good timing resolution (500 ps, 3 fiber, 1.3 m)
 - Sensitive to small energy depositions by neutrons
- High potential to reconstruct neutrons on event-by-event basis via Time-of-Flight

Neutrons and 3DST-S

Purity (left) and energy resolution (right) as function of flight distance and ToF. Lines showing different KE_n shown.

Neutrons are a new tool:

- New handle for flux measurements
- New handle to explore interaction physics/modeling

Neutrons as a new tool

- Studies using single transverse variables (STV) showing up in recent publications from MINERvA and T2K
- Being used to improve neutrino energy reconstruction and deconvolve initial and final state processes
- Having access to neutrons in reconstruction will make this even more useful

Figure from MINERvA collab., PRL 121, 022504 (2018)

Neutrons as a new tool

- Add neutrons to analysis event-by-event, looking at δp_{T}
- Particularly of interest for $\ \overline{
 u_{\mu}} \$ flux determination

Area normalized

- Cut on missing $p_T \rightarrow sample$ with less nuclear/FSI effects (H enhanced)
- Gives improved energy resolution for flux determination.
- $\overline{\nu_{\mu}}$ CCQE (30% of events at DUNE)
- Expanding study to $n\pi^{\circ}$ final state

STV studies, recent work

Deconvolving initial state and final state and CCQE from resonance (even where detector sees same final state)

Incorporation of neutrons in STV studies likely to be helpful

- Neutrino interaction model: not reality, requires tuning
- DUNE will tune with argon data from LArTPC, MPD

But

- Model development will use all handles
- ➤ Neutrons in 3DST-S promising new handle

2p2h/MEC is a case study for surprising physics seen/studied in CH
Generators include something (imperfect) for it
DUNE will use and tune with Ar data

Contribution to robustness of experiment

Admittedly a somewhat fuzzy topic, but robustness is important.

Dedicated on-axis neutrino spectrum monitoring

Minimal technology risk Very fast detector

Inclusion of neutrons improved STV analyses may help model evolution

Flux measurements:

- Anti-ν₁ with n
- Sign-separated (anti-)v_e CC flux measurement (before MPD gets the stats)
- ► Low-v and v-e⁻, different background systematics from Ar detectors

Confidence in parts of model may be bolstered by studying A dependence

Provides tight connection to world CH data catalog

Beam and interaction models feed into oscillation analysis:

Imperfect model does not agree with Ar data Tweaked model agrees better, still not perfect

Set systematic error

- Residual disagreement (Ar data)
- Parameter adjustment range
- Confidence, input from all sources welcome

Tweak with Ar data constraints Beam model tuning

Contribution to robustness of experiment

Dedicated on-axis neutrino spectrum monitoring

Minimal technology risk Very fast detector

Inclusion of neutrons improved STV analyses may help model evolution

Flux measurements:

- > Anti-v_u with n
- Sign-separated (anti-)v_e CC flux measurement (before MPD gets the stats)
- Low-v and v-e⁻, different background systematics from Ar detectors

Confidence in parts of model may be bolstered by studying A dependence

Provides tight connection to world CH data catalog

Beam and interaction models feed into oscillation analysis:

Imperfect model does not agree with Ar data

Tweaked model agrees better, still not perfect

Tweak with Ar data constraints
Beam model tuning

Set systematic error

- Residual disagreement (Ar data)
- Parameter adjustment range
- Confidence, input from all sources welcome

Technical status of 3DST

Technology R&D well along since also being used for SuperFGD in T2K upgrade

SuperFGD is a 3DST prototype

Several beam tests at CERN

Many DUNE collaborators involved in 3DST are also involved with SuperFGD

Technical status of 3DST

3DST and SuperFGD collaborators planning to run devices in neutron beam test at LANL this summer/fall 8x24x48 cubes

US-Japan prototype cubes

8x8x32 cubes

US-Japan prototype box

n beam

Technical risks for 3DST-S

➤ 3DST-S component technologies prototyped and/or proven → low risk

3DST-S: different configurations under study

Beam's eye view

June 2019

The SuperFGD/3DST Group (19 institutions, 9 countries + CERN) Korea CERN USA BNL Chung-Ang U. France Fermilab **CEA Saclay** Russia Japan Louisiana S. U. S. Dakota School of KEK INR Mining and Germany Tokyo Metropolitan U. Technology MPI Munich U. Kyoto **Spain** Stony Brook U. IFAE, Barcelona U. Tokyo U. California, Irvine Yokohama National U. U. Colorado Switzerland * Institutions in yellow have expressed U. Minnesota, Duluth specific interests in DUNE ND 3DST-S U. Geneva U. Pennsylvania * Two students from Madagascar are very U. Pittsburgh actively involved in the 3DST studies. U. Rochester * Monireh (Minoo) Kabirnezhad, Oxford, just joined the 3DST effort

