

PDS TDR NEEDS AND PLANS

ZELIMIR DJURCIC

High Energy Physics Argonne National Laboratory

PDS TDR Needs and Plots

- Need complete TDR by early July
 - -Demonstrate successful implementation, operation, and analysis of PDS (at high level) with ProtoDUNE
- What is suggested for inclusion in TDR in terms of PDS topics
 - -PDS Gain and Stability
 - -PDS Energy Scale Linearity and Resolution
 - -PDS Time Resolution and PDS/TPC Time Matching
 - -PDS Michel Reconstruction/Timing
 - -Detector Light Yield (PE/MeV)
 - -PDS Light Collector Stability Plots
- When focusing on TDR also think about first ProtoDUNE Publications
 - -TDR results coupled to plans/needs for first publication

PDS Gain and Stability

ARAPUCA Plot Examples (from Dante) => for TDR + first journal publication

Make the plot for all ARAPUCA channels and for three tome periods (DCM data taken Nov, Jan/Feb, March/April) -make overlay plot with data from different periods

Double-Shift Bars (from Chris) => for first journal publication -Make equivalent set of plots

Peak

PDS Energy scale linearity and resolution

• Measure the mean number of photo-electrons collected by the ARAPUCA for different beam particle energies (work by Dante)

PDS Time Resolution and PDS/TPC Time Matching

• Distributions of time (t1) of the first pulse wrt external trigger, and/or time (t2) of the second pulse wrt trigger provide an estimate of ARAPUCA's time resolution with SSP readout (ZD)

This would fit in PDS performance part of TDR, and/or within calib/monitoring section of TDR

NATIONAL LABORATORY

• Analysis of cathode-crossing muon tracks, used to determine T0 of these events by matching APA times between two drift volumes, and matching it against light flashes (Aleena)

-Need update this analysis with improved light reconstruction (as implemented by Kyle)

PDS Michel Reconstruction/Timing

This would be a bonus for TDR and was suggested for the first publication
 -Aleena's work

-No PDS component in Michel analysis yet but it is defining Michel sample that we need to observe/verify by PDS => work ongoing by Aleena, Zelimir with an attempt to meet the TDR schedule -basically wants "Michel time since muon" plot for Michels identified by TPC

Argonne

PDS Light Yield (PE/MeV)

- Get the PDS light yield from 7 GeV/c beam electrons (or similar beam sample) and/or from CRT tagged muons
 - -needs understand attenuation and relative light yields (need MC match the data)
 - -Bryan, Dante, others => might be ready in a month time scale
 - -Also proposed for the first ProtoDUNE publication

PDS Light Collector Stability Plots

- Demonstrate Stability of wavelength shifter and optical properties of photon collectors
 - -Stability plot that shows a cumulative light yield as a function of time (Oct/Nov, Jan/Feb, Mar/April) for CRT tagged cosmic ray muons
 - -Stability plot of DCM light yield at stable amplitude as a function of time (Nov, Jan/Feb, Mar/April)

Anything else for TDR?

• Will bring back this topic at next ProtoDUNE PDS Operations and Analysis meetings

BACKUP

Proposed ProtoDUNE Papers and PDS chapters

Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC

8 PhD characterization

- 8.1 Non-responsive sensors/channels
- 8.2 Test Pulse (Flasher): Single PE calibration and stability
- 8.3 PhDetector(s) Efficiency (PE/Ph)

First results on ProtoDUNE-SP Liquid Argon TPC performance from a test beam run at CERN Neutrino Platform

7 PhD response

- 7.1 Single PE rate
- 7.2 Light Signal Calibration
 - 7.2.1 Detector Light Yield (PE/MeV) from 7 GeV/c beam electrons
 - 7.2.2 Low Energy Signals (Michel Electrons)

