Neutron Transport Update

June 11

Logan Rice, Donna Naples, Jingbo Wang

Update

- Used dune10kt_v4 parameters to generate the full far detector
- Neutron transport simulation working in this geometry as well as in protodune_v5.gdml
- Neutrons can be produced with a realistic energy spectrum
- Still need to add angular spectrum to neutrons entering the argon.
- Still need to incorporate FR4 cathode components into the full geometry...

- Active volume: black rectangles Full FD
- Origin: Black X
- APAs: Orange lines
- CPAs: White lines

• 57keV neutrons at (1m,0,1m) with momenta in +z

Geometry

Neutron Ending Positions

- All neutrons
- Neutrons captured in active volume
- Neutrons exiting the active volume downstream

- Active volume: black rectangles
- Origin: Black X
- APAs: Orange lines
- CPAs: White lines

The production location was chosen as my best guess from looking at the diagram on pg 433 of the tdr draft on dunedocdb: https://docs.dunescience.org/cgibin/private/RetrieveFile? docid=11650&filename=volsp_22Apr2019.pdf&version=7#glo%3Adss

• 57keV neutrons at (-5.76m,6.10m,-.7m). Upstream of active volume. Just above field cage.

- Neutrons captured in active volume
- Neutrons ending upstream of active volume
- Neutrons ending below active volume
- Neutrons ending downstream of active volume

- Realistic energy spectrum of neutrons at (-5.76m,6.10m,-.7m).
- Momenta are in the -y direction (will add angular spectrum soon)

Initial Neutron Energy spectrum

Neutron Ending Positions

- Neutrons ending upstream of active volume
- Neutrons captured in active volume
- Neutrons ending below active volume

What fraction reach different parts of the detector?

- Using "voxels" the size of a TPC volume (3.6mx2.3mx6m)
- Numbering follows
 Larsoft convention
 - 0 is the bottom left most upstream "voxel"
 - 0,1,2,3 are increasing in x position
 - 0,8,16, are increasing in z postion

- Lower "voxels"
- Upper "voxels"

- TPC's closer to the manhole position (red x) have more neutrons captured.
 - Lower "voxels"
 - Upper "voxels"

X	0.7% 0.32%	0.57% 0.18%	0.35% 0.13%		
	0.43% 0.26%	0.38% 0.13%	0.23% 0.16%		
	0.3% 0.11%	0.19% 0.13%	0.16% 0.15%		

Conclusion

- Neutrons with realistic energy are simulated in a large (full fd) volume.
- Next steps / need feedback
 - Precise location of manhole
 - Add realistic angular distribution to simulated neutrons (I have a histogram from Jingbo)
 - Add in FR4 Cathode components