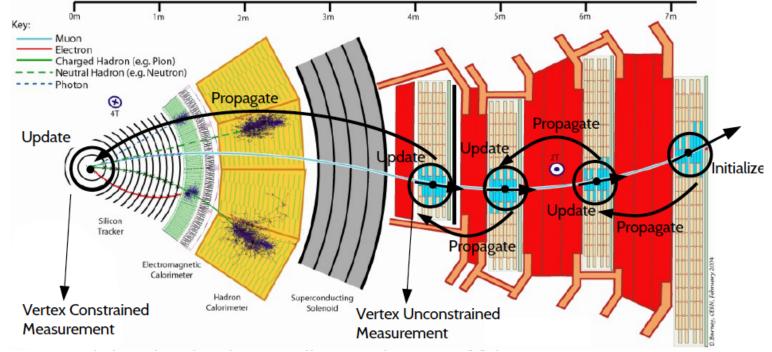


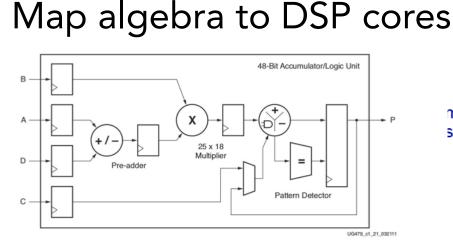
"On-chip" Computation

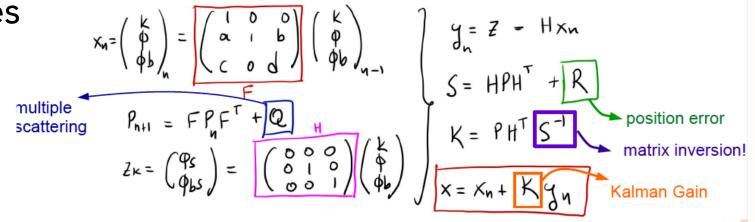

FPGA frameworks for edge and near-edge computing: examples and strategy towards HL-LHC

Michalis Bachtis (UCLA), Javier Duarte (FNAL)

Compute on hardware

- <u>Track Reconstruction:</u> CPU expensive algorithm at HL-LHC
- Recent application of "offline" track reconstruction in FPGAs with a Kalman filter in the L1 Muon Trigger in current CMS data taking
 - opens doors towards accelerating track reconstruction algorithms with FPGAs <u>also offline at HL-LHC</u>





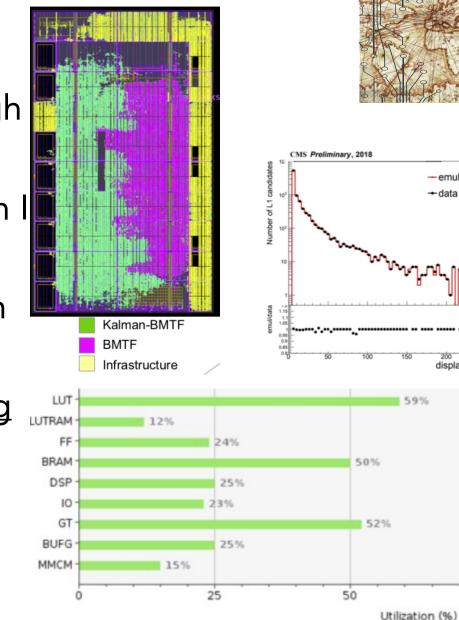
Implementing a Kalman Filter in an FPGA

Matrix algebra including matrix inversion!

Every step consists of track propagation and parameter update (k=q/P_T)

Modern FPGAs: 1000s of DSP cores

- Exist for filtering, AI, and military applications
 - ASIC cores in the FPGA that contain wide multipliers and adders
- Exploiting this commercially available resource reduced required FPGA resources by x5


Implementation results

FPGA firmware written with the latest High Level Synthesis (HLS) tools in C

- Deployed in CMS L1 data taking in Run I
- Reconstructs all muon tracks in 150ns!

Proving that C code can run efficiently on an FPGA


 Fundamental step towards <u>accelerating</u> <u>current C/C++ offline algorithms with</u> <u>FPGAs in HL-LHC</u>

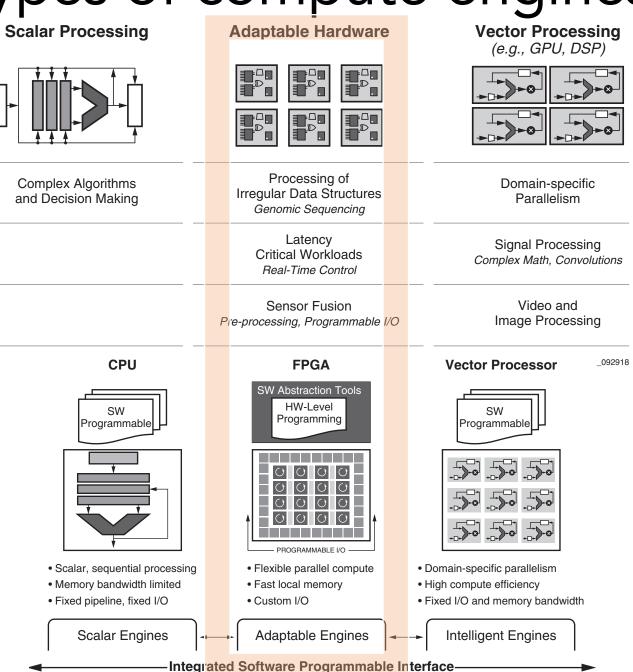
Fermila

Interface between L1 Trigger and computing towards HL-LHC

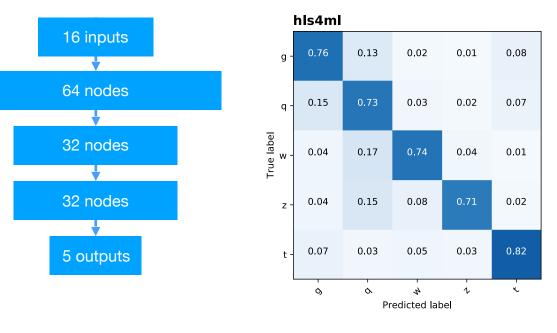
US CMS performing R&D with cutting edge technology FPGAs for the L1 Trigger

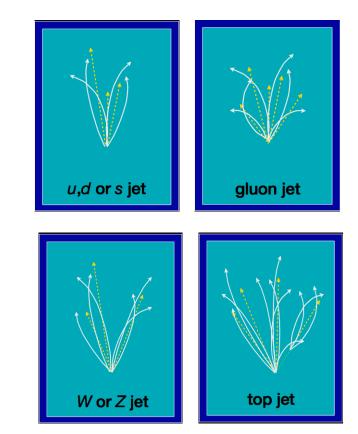
FPGA vendors moving towards combining many different technologies in a single chip

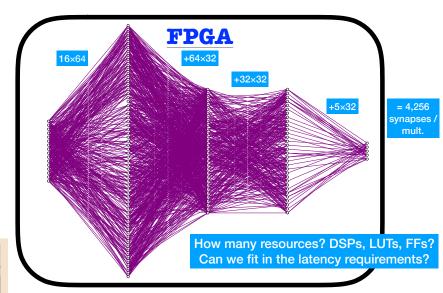
- Future generation FPGAs [to arrive in the market in 2020] will combine FPGA logic with CPUs and specific AI cores towards an adaptable computing engine
- While the L1 Trigger (due to latency limits of ~ μ s) will mostly benefit from the FPGA logic, the same device can be reconfigured for a computing application accelerating algorithmic parts using the FPGA logic


HL-LHC strategy from Muon trigger implementation

- 1. Advanced/Clever Programming of Modern FPGAs
- Exploit DSP cores to reduce resource usage: More algorithms in a chip
- Running C algorithms in an FPGA: Enables acceleration of offline algorithms
- Bigger and faster FPGAs
 - Faster clocks make algorithms faster
 - Embedded computing elements inside chip perform co-processing
- 2. High Speed on-board data links & Hybrid On board (or on Chip) computing More and/or higher speed links (~25 100Gbps Ethernet connections/FPGA!)
 - Connect multiple devices together
- Many devices in the same Chip: Adaptable computing optimized for the application




Reminder: types of compute engines



NN correctly identifies jets 70-80% of the time

OPTIMIZE NN's for FPGAs resource

Compress: Maintain high performance while removing redundant synapses and neurons Quantize: Reduce precision from 32-bit floating point to 20-bit, 8-bit, ... Parallelize/Reuse: Balance: parallelization (how fast) with FPGA resources needed (how costly)

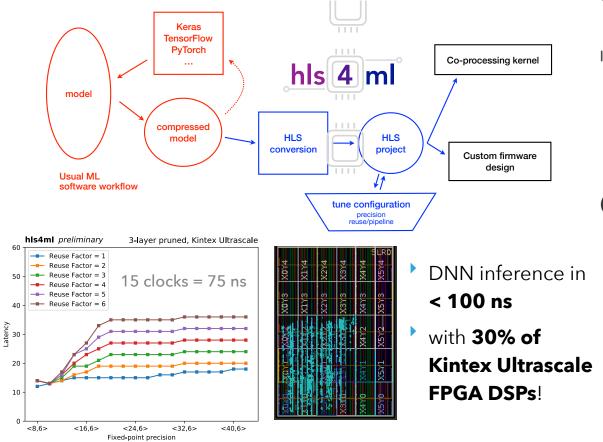
J. Duarte et al.

0.8

0.2

0.0

JINST 13 P07027


Fast inference of deep neural networks in FPGAs for particle physics

Javier Duarte^a, Song Han^b, Philip Harris^b, Sergo Jindariani^a, Edward Kreinar^c, Benjamin Kreis^a, Jennifer Ngadiuba^d, Maurizio Pierini^d, Ryan Rivera^a, Nhan Tran^a, Zhenbin Wu^e ^aFermi National Accelerator Laboratory, Batavia, IL 60510, USA ^bMassachusets Institute of Technology, Cambridge, MA 02139, USA ^c HawkEye360, Herndon, VA 20170, USA ^d CERN, CH-1211 Geneva 23, Switzerland ^e University of Illinois at Chicago, Chicago, IL 60607, USA *E*-mail: Isbeah. help@gmail.com

Tool: <u>hls4ml</u>

hls4ml for physicists or ML experts to translate ML algorithms into FPGA firmware

Citation

If you are using the package please cite:

2018

Jun

28

- DOI 10.5281/zenodo.1204445
- J. Duarte *et al.*, "Fast inference of deep neural networks in FPGAs for particle physics", JINST 13 P07027 (2018), arXiv:1804.06913.

Contributors

- Vladimir Loncar, Jennifer Ngadiuba, Maurizio Pierini, Sioni Summers [CERN]
- Javier Duarte, Sergo Jindariani, Benjamin Kreis, Ryan Rivera, Nhan Tran [Fermilab]
- Edward Kreinar [Hawkeye360]
- Song Han, Philip Harris, Dylan Rankin [MIT]
- Zhenbin Wu [University of Illinois at Chicago]
- Mark Neubauer [University of Illinois Urbana-Champaign]
- Shih-Chieh Hsu [University of Washington]
- Giuseppe Di Guglielmo [Columbia University]

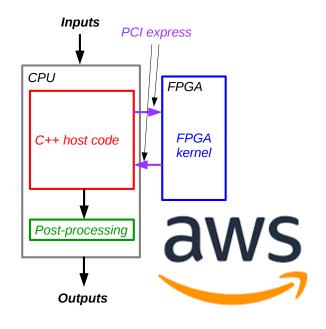
DUNE, ATLAS, Accel. Division interested

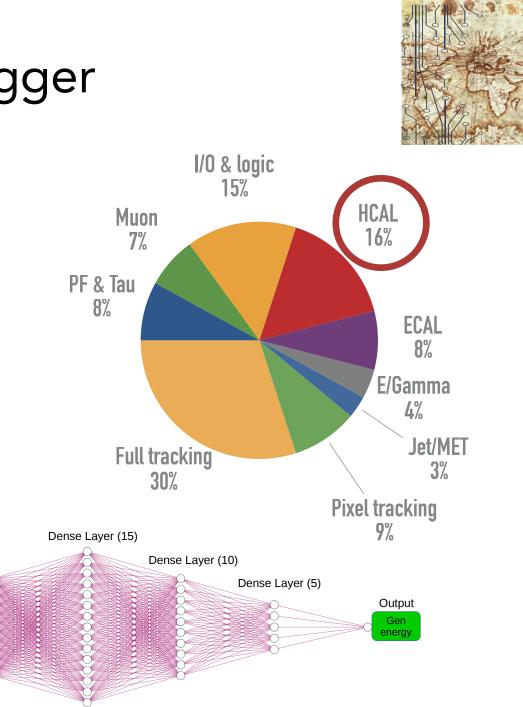
Accelerating High-Level Trigger with FPGAs

Inputs

TS0 TS1 TS2

TS3

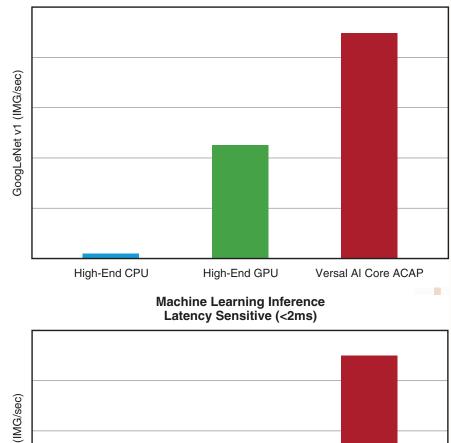

TS4


TS5

TS6 TS7 iη iφ

dept

- HCAL local reconstruction contributes significantly to HLT compute time
- ML+FPGA as co-processor can reduce HCAL local reco. compute time by up to ×16
- Tested using AWS FPGAs



#Fermilab

Machine Learning Inference Latency Insensitive (High Batch)

Summary

- Exploiting new paradigms to improve and accelerate HL-LHC trigger algorithms with applications for the future computing model in HL-LHC
 - Algorithm acceleration with FPGAs programmed in C
 - High speed interconnect of computing elements
 - New adaptable hardware
- Strengthening connections and familiarity with new industry tools and technologies
- Developed techniques applicable in ATLAS, DUNE, Accelerator controls, and more (with interested collaborators)

High End CPU High End GPU Versal Al Core

XILINX announced (end of 2018) their 7nm technology (Versal) which does parallel, sequential processing and AI. White Paper: Versal ACAPs (https://bit.ly/2IZf1BS)

🗲 XII INX.

WP505 (v1.0) October 2, 2018