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Compute on hardware

M. Bachtis et al

• Track Reconstruction: CPU expensive algorithm at HL-LHC  
• Recent application of “offline” track reconstruction in FPGAs with 

a Kalman filter in the L1 Muon Trigger in current CMS data taking  
• opens doors towards accelerating track reconstruction algorithms with 

FPGAs also offline at HL-LHC



Implementing a Kalman Filter in an  
FPGA
Matrix algebra including 
matrix inversion! 
Map algebra to DSP cores 

Modern FPGAs: 1000s of DSP cores 
• Exist for filtering, AI, and military applications 

• ASIC cores in the FPGA that contain wide multipliers and adders 
• Exploiting this commercially available resource reduced required FPGA resources by x5   

 



Implementation results
FPGA firmware written with the latest High 
Level Synthesis (HLS) tools in C  
• Deployed in CMS L1 data taking in Run II 
• Reconstructs all muon tracks in 150ns! 

Proving that C code can run efficiently  on 
an FPGA  
• Fundamental step towards accelerating 

current C/C++ offline algorithms with 
FPGAs in HL-LHC 

 



Interface between L1 Trigger and computing 
towards HL-LHC
US CMS performing R&D with cutting edge technology FPGAs for 
the L1 Trigger 
FPGA vendors  moving towards combining many different 
technologies in a single chip 
• Future generation FPGAs [to arrive in the market in 2020] will 

combine FPGA  logic with CPUs and specific AI cores  towards an 
adaptable computing engine  

• While the L1 Trigger (due to latency limits of ~μs ) will mostly 
benefit from the FPGA logic, the same device can be re-
configured for a computing  application accelerating algorithmic 
parts using the FPGA logic



HL-LHC strategy from Muon trigger 
implementation 
1. Advanced/Clever Programming of Modern FPGAs 
• Exploit DSP cores to reduce resource usage: More algorithms in a chip 
• Running C algorithms in an FPGA: Enables acceleration of offline algorithms  
• Bigger and faster FPGAs  
• Faster clocks make algorithms faster  
• Embedded computing elements inside chip perform co-processing  

2. High Speed on-board  data links & Hybrid On board (or on Chip) computing 
More and/or higher speed links (~25 100Gbps Ethernet connections/FPGA!)  
 Connect multiple devices together 
Many devices in the same Chip: Adaptable computing optimized for the 
application



Reminder: types of compute engines
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Versal: The First Adaptive Compute Acceleration Platform (ACAP)

To answer the question, Xilinx is introducing a revolutionary new heterogeneous compute 
architecture, the adaptive compute acceleration platform (ACAP), which delivers the best of all 
three worlds—world-class vector and scalar processing elements tightly coupled to next-
generation programmable logic (PL), all tied together with a high-bandwidth network-on-chip 
(NoC), which provides memory-mapped access to all three processing element types. This tightly 
coupled hybrid architecture allows more dramatic customization and performance increase than 
any one implementation alone. See Figure 3.

X-Ref Target - Figure 2

Figure 2: Types of Compute Engines

X-Ref Target - Figure 3

Figure 3: Heterogeneous Integration of Three Types of Programmable Engines
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MACHINE LEARNING IN FPGAS? �4

FPGA

How many resources? DSPs, LUTs, FFs? 
Can we fit in the latency requirements?

= 4,256  
synapses / 

mult.

+5×32

+32×32

+64×3216×64

16 inputs

64 nodes

32 nodes

32 nodes

5 outputs

NN correctly identifies jets 70-80% of the time

OPTIMIZE NN’s for FPGAs resource 
Compress: Maintain high performance while 
removing redundant synapses and neurons  
Quantize: Reduce precision from 32-bit floating 
point to 20-bit, 8-bit, … 
Parallelize/Reuse: Balance: parallelization (how 
fast) with FPGA resources needed (how costly)  

J. Duarte et al.



compressed 
model

Keras 
TensorFlow 

PyTorch 
…

tune configuration
precision 


reuse/pipeline

HLS  
project

HLS  
conversion

Co-processing kernel

Custom firmware 
design

model

Usual ML  
software workflow

hls  4  ml

hls4ml

HLS  4  ML

Tool: hls4ml
JINST 13 P07027 

DUNE, ATLAS, Accel. Division interested

15 clocks = 75 ns

‣ hls4ml for physicists or ML experts to translate 
ML algorithms into FPGA firmware

‣ DNN inference in 
< 100 ns  

‣ with 30% of 
Kintex Ultrascale 
FPGA DSPs!

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913
https://hls-fpga-machine-learning.github.io/hls4ml/


Accelerating High-Level Trigger  
with FPGAs

13

FPGA Acceleration

● Can accelerate on Amazon Web 
Services (AWS) using SDAccel 
(tool for acceleration)

– AWS F1 instances are are 
connected to a VU9P FPGA

● Develop host code and FPGA 
kernel side-by-side, host code 
knows exactly where to 
send/receive inputs

● Batching is still useful in this case

– Allows reduction in total overhead 
from all data transfers, no latency 
reduction in actual FPGA latency

Inputs

Outputs

CPU

C++ host code

Post-processing

 
FPGA 
kernel

PCI express

FPGA

5

Machine Learning HCal 
Reconstruction

● Take similar inputs as MAHI and train a regression

– Output is the gen rec hit energy (w/o PU)

● 11 Inputs : 8 raw energies (8 TS) + iη + iφ + depth

● 3 hidden layers (15, 10, 5 nodes)

● Network is quite small (391 parameters)

– Work grew from current L1 trigger work: minimal size

● Model: 

TS0
TS1
TS2
TS3
TS4
TS5
TS6
TS7
iη
iφ

depth

Gen
energy

Inputs

Output

Dense Layer (15)

Dense Layer (10)

Dense Layer (5)

‣ HCAL local reconstruction contributes significantly 
to HLT compute time 

‣ ML+FPGA as co-processor can reduce HCAL local 
reco. compute time by up to ×16 

‣ Tested using AWS FPGAs

Full tracking
30%

Pixel tracking
9%

Jet/MET
3%

E/Gamma
4%

ECAL
8%

HCAL
16%

I/O & logic
15%

Muon
7%

PF & Tau
8%



Summary
• Exploiting new paradigms to improve and accelerate 

HL-LHC trigger algorithms with applications for the 
future computing model in HL-LHC 

• Algorithm acceleration with FPGAs programmed in C 
• High speed interconnect of computing elements  
• New adaptable hardware 

• Strengthening connections and familiarity with new 
industry tools and technologies 

• Developed techniques applicable in ATLAS, DUNE, 
Accelerator controls, and more (with interested 
collaborators)

XILINX announced (end of 2018) their 7nm technology (Versal) which does parallel, 
sequential processing and AI. White Paper: Versal ACAPs (https://bit.ly/2IZf1BS) 
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Versal: The First Adaptive Compute Acceleration Platform (ACAP)

As Data Center applications for neural networks continue to get more advanced, multiple neural 
networks can be chained together, greatly increasing the need for low latency neural network 
performance. For example, real-time spoken word translation requires speech-to-text, natural 
language processing, a recommender system, text-to-speech, and then speech synthesis [Ref 2]. 
This means the neural network's portion of the total latency budget is multiplied by 5 for this 
application.

As the number of real-time applications continues to increase, it is important for Data Center 
customers to choose a technology that can scale to keep up with their future needs. Two trends are 
emerging: 

• Deterministic latency is becoming increasingly important to improve software design efficiency 
[Ref 3]. 

• Neural network latency requirements continue to tighten as increasingly complex interactions 
are modeled (human interaction, financial trading), and safety-critical applications rise in 
importance (e.g., automotive, industrial). 

These two requirements necessitate the removal of batching, which causes the performance of 
fixed, cache-based memory hierarchy of CPU and GPU-based solutions to degrade significantly. 
Even a high-end CPU caps out at 5ms latency, and below 7ms, even high-end GPUs degrade 
significantly in performance. Only the Versal ACAP achieves sub-2ms latency with acceptable 
performance. See Figure 8.

X-Ref Target - Figure 8

Figure 8: Real-Time GoogLeNet Performance (< 2ms Latency) = 8X Higher Than High-End GPU (Nvidia)1, 2

1. Measured on Xeon Platinum 8124 Skylake, c5.18xlarge AWS instance, Intel Caffe: https://github.com/in-
tel/caffe.
2. V100 numbers taken from Nvidia Technical Overview, "Deep Learning Platform, Giant Leaps in Performance
and Efficiency for AI Services."
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Introducing Versal ACAP, a fully software-programmable, 
heterogeneous compute platform that combines Scalar 
Engines, Adaptable Engines, and Intelligent Engines to 
achieve dramatic performance improvements of up to 20X 
over today's fastest FPGA implementations and over 100X 
over today's fastest CPU implementations—for Data Center, 
wired network, 5G wireless, and automotive driver assist 
applications.

White Paper: Versal ACAPs
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Versal:
The First Adaptive Compute 

Acceleration Platform (ACAP) 

ABSTRACT
Recent technical challenges have forced the industry to explore options 
beyond the conventional “one size fits all” CPU scalar processing solution. Very 
large vector processing (DSP, GPU) solves some problems, but it runs into 
traditional scaling challenges due to inflexible, inefficient memory bandwidth 
usage. Traditional FPGA solutions provide programmable memory hierarchy, 
but the traditional hardware development flow has been a barrier to broad, 
high-volume adoption in application spaces like the Data Center market.
The solution combines all three elements with a new tool flow that offers a 
variety of different abstractions—from framework to C to RTL-level coding—
into an adaptive compute acceleration platform (ACAP). This new category of 
devices, Xilinx’s Versal™ ACAPs, allows users to customize their own domain-
specific architecture (DSA) from these three programmable elements.
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Versal: The First Adaptive Compute Acceleration Platform (ACAP)

Data Center Artificial Intelligence: Machine Learning Inference 

Acceleration

As artificial intelligence starts to pervade modern life, the demand for enhanced compute 
efficiency has begun to drive innovation in the semiconductor space—but it is difficult for any 
single implementation to handle with maximum efficiency. This is one area where the tight 
coupling between vector processing and programmable hardware is invaluable. 

There has been a lot of attention on the precision of the compute unit (FP32 versus FP16 versus 
INT16 versus INT8, etc.), but inattention to the divergence in memory hierarchy requirements 
between network types has caused many of the most recent AI inference engines to drop sharply 
in efficiency for different networks. For example, the current state-of-the-art machine learning 
inference engines require four HBM memories (7.2Tb/s of external memory bandwidth) to reach 
their peak performance—but their cache-based memory hierarchy only operates at around 
25–30% efficiency and creates significant latency uncertainty for real-time applications. The 
solution is to augment the vector processing performed by intelligent engines with a 
programmable memory hierarchy, precisely optimized for each network type and enabled by the 
massive parallelism of FPGA logic. 

For example, a Versal platform implementation of GoogLeNet enables extraordinarily high 
performance for latency insensitive applications, 43X more throughput than today's top-of-the-line 
Skylake Platinum CPU(2), and about 3X today's top-of-the-line GPU [Ref 2]—all at much lower 
power. See Figure 7.

2. Xeon Platinum 8124 Skylake, c5.18xlarge AWS instance, Canonical, Ubuntu, 16.04LTS, AMD64 Xenial image build on 2018-08-14, 
Intel Caffe. Git Version: a3d5b02, run_benchmark.py unmodified.

X-Ref Target - Figure 7

Figure 7: GoogLeNet Performance (< 7ms Latency) = 43X Higher Than a High-End CPU1, 2

1. Measured on Xeon Platinum 8124 Skylake, c5.18xlarge AWS instance, Intel Caffe: https://github.com/in-
tel/caffe. 
2. V100 numbers taken from Nvidia Technical Overview, "Deep Learning Platform, Giant Leaps in Performance
and Efficiency for AI Services."
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