
“On-chip” Computation
FPGA frameworks for edge and near-edge computing:

examples and strategy towards HL-LHC

Michalis Bachtis (UCLA), Javier Duarte (FNAL)

Compute on hardware

M. Bachtis et al

• Track Reconstruction: CPU expensive algorithm at HL-LHC
• Recent application of “offline” track reconstruction in FPGAs with

a Kalman filter in the L1 Muon Trigger in current CMS data taking
• opens doors towards accelerating track reconstruction algorithms with

FPGAs also offline at HL-LHC

Implementing a Kalman Filter in an  
FPGA
Matrix algebra including
matrix inversion!
Map algebra to DSP cores

Modern FPGAs: 1000s of DSP cores
• Exist for filtering, AI, and military applications

• ASIC cores in the FPGA that contain wide multipliers and adders
• Exploiting this commercially available resource reduced required FPGA resources by x5

Implementation results
FPGA firmware written with the latest High
Level Synthesis (HLS) tools in C
• Deployed in CMS L1 data taking in Run II
• Reconstructs all muon tracks in 150ns!

Proving that C code can run efficiently on
an FPGA
• Fundamental step towards accelerating

current C/C++ offline algorithms with
FPGAs in HL-LHC

Interface between L1 Trigger and computing
towards HL-LHC
US CMS performing R&D with cutting edge technology FPGAs for
the L1 Trigger
FPGA vendors moving towards combining many different
technologies in a single chip
• Future generation FPGAs [to arrive in the market in 2020] will

combine FPGA logic with CPUs and specific AI cores towards an
adaptable computing engine

• While the L1 Trigger (due to latency limits of ~μs) will mostly
benefit from the FPGA logic, the same device can be re-
configured for a computing application accelerating algorithmic
parts using the FPGA logic

HL-LHC strategy from Muon trigger
implementation
1. Advanced/Clever Programming of Modern FPGAs
• Exploit DSP cores to reduce resource usage: More algorithms in a chip
• Running C algorithms in an FPGA: Enables acceleration of offline algorithms
• Bigger and faster FPGAs
• Faster clocks make algorithms faster
• Embedded computing elements inside chip perform co-processing

2. High Speed on-board data links & Hybrid On board (or on Chip) computing
More and/or higher speed links (~25 100Gbps Ethernet connections/FPGA!)
 Connect multiple devices together
Many devices in the same Chip: Adaptable computing optimized for the
application

Reminder: types of compute engines

WP505 (v1.0) October 2, 2018 www.xilinx.com 3

Versal: The First Adaptive Compute Acceleration Platform (ACAP)

To answer the question, Xilinx is introducing a revolutionary new heterogeneous compute
architecture, the adaptive compute acceleration platform (ACAP), which delivers the best of all
three worlds—world-class vector and scalar processing elements tightly coupled to next-
generation programmable logic (PL), all tied together with a high-bandwidth network-on-chip
(NoC), which provides memory-mapped access to all three processing element types. This tightly
coupled hybrid architecture allows more dramatic customization and performance increase than
any one implementation alone. See Figure 3.

X-Ref Target - Figure 2

Figure 2: Types of Compute Engines

X-Ref Target - Figure 3

Figure 3: Heterogeneous Integration of Three Types of Programmable Engines

WP505_02_092918

Scalar Processing

Complex Algorithms
and Decision Making

Adaptable Hardware

Processing of
Irregular Data Structures

Genomic Sequencing

Latency
Critical Workloads
Real-Time Control

Sensor Fusion
Pre-processing, Programmable I/O

Vector Processing
(e.g., GPU, DSP)

Domain-specific
Parallelism

Signal Processing
Complex Math, Convolutions

Video and
Image Processing

Integrated Software Programmable Interface
WP505_03_092718

SW
Programmable

CPU

SW
Programmable

Vector Processor

• Scalar, sequential processing
• Memory bandwidth limited
• Fixed pipeline, fixed I/O

• Domain-specific parallelism
• High compute efficiency
• Fixed I/O and memory bandwidth

HW-Level
Programming

SW Abstraction Tools

FPGA

• Flexible parallel compute
• Fast local memory
• Custom I/O

PROGRAMMABLE I/O

Scalar Engines Intelligent EnginesAdaptable Engines

WP505 (v1.0) October 2, 2018 www.xilinx.com 3

Versal: The First Adaptive Compute Acceleration Platform (ACAP)

To answer the question, Xilinx is introducing a revolutionary new heterogeneous compute
architecture, the adaptive compute acceleration platform (ACAP), which delivers the best of all
three worlds—world-class vector and scalar processing elements tightly coupled to next-
generation programmable logic (PL), all tied together with a high-bandwidth network-on-chip
(NoC), which provides memory-mapped access to all three processing element types. This tightly
coupled hybrid architecture allows more dramatic customization and performance increase than
any one implementation alone. See Figure 3.

X-Ref Target - Figure 2

Figure 2: Types of Compute Engines

X-Ref Target - Figure 3

Figure 3: Heterogeneous Integration of Three Types of Programmable Engines

WP505_02_092918

Scalar Processing

Complex Algorithms
and Decision Making

Adaptable Hardware

Processing of
Irregular Data Structures

Genomic Sequencing

Latency
Critical Workloads
Real-Time Control

Sensor Fusion
Pre-processing, Programmable I/O

Vector Processing
(e.g., GPU, DSP)

Domain-specific
Parallelism

Signal Processing
Complex Math, Convolutions

Video and
Image Processing

Integrated Software Programmable Interface
WP505_03_092718

SW
Programmable

CPU

SW
Programmable

Vector Processor

• Scalar, sequential processing
• Memory bandwidth limited
• Fixed pipeline, fixed I/O

• Domain-specific parallelism
• High compute efficiency
• Fixed I/O and memory bandwidth

HW-Level
Programming

SW Abstraction Tools

FPGA

• Flexible parallel compute
• Fast local memory
• Custom I/O

PROGRAMMABLE I/O

Scalar Engines Intelligent EnginesAdaptable Engines

MACHINE LEARNING IN FPGAS? �4

FPGA

How many resources? DSPs, LUTs, FFs?
Can we fit in the latency requirements?

= 4,256  
synapses / 

mult.

+5×32

+32×32

+64×3216×64

16 inputs

64 nodes

32 nodes

32 nodes

5 outputs

NN correctly identifies jets 70-80% of the time

OPTIMIZE NN’s for FPGAs resource
Compress: Maintain high performance while
removing redundant synapses and neurons
Quantize: Reduce precision from 32-bit floating
point to 20-bit, 8-bit, …
Parallelize/Reuse: Balance: parallelization (how
fast) with FPGA resources needed (how costly)  

J. Duarte et al.

compressed
model

Keras
TensorFlow

PyTorch
…

tune configuration
precision

reuse/pipeline

HLS
project

HLS
conversion

Co-processing kernel

Custom firmware
design

model

Usual ML
software workflow

hls 4 ml

hls4ml

HLS 4 ML

Tool: hls4ml
JINST 13 P07027

DUNE, ATLAS, Accel. Division interested

15 clocks = 75 ns

‣ hls4ml for physicists or ML experts to translate
ML algorithms into FPGA firmware

‣ DNN inference in
< 100 ns

‣ with 30% of
Kintex Ultrascale
FPGA DSPs!

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913
https://hls-fpga-machine-learning.github.io/hls4ml/

Accelerating High-Level Trigger  
with FPGAs

13

FPGA Acceleration

● Can accelerate on Amazon Web
Services (AWS) using SDAccel
(tool for acceleration)

– AWS F1 instances are are
connected to a VU9P FPGA

● Develop host code and FPGA
kernel side-by-side, host code
knows exactly where to
send/receive inputs

● Batching is still useful in this case

– Allows reduction in total overhead
from all data transfers, no latency
reduction in actual FPGA latency

Inputs

Outputs

CPU

C++ host code

Post-processing

FPGA
kernel

PCI express

FPGA

5

Machine Learning HCal
Reconstruction

● Take similar inputs as MAHI and train a regression

– Output is the gen rec hit energy (w/o PU)

● 11 Inputs : 8 raw energies (8 TS) + iη + iφ + depth

● 3 hidden layers (15, 10, 5 nodes)

● Network is quite small (391 parameters)

– Work grew from current L1 trigger work: minimal size

● Model:

TS0
TS1
TS2
TS3
TS4
TS5
TS6
TS7
iη
iφ

depth

Gen
energy

Inputs

Output

Dense Layer (15)

Dense Layer (10)

Dense Layer (5)

‣ HCAL local reconstruction contributes significantly
to HLT compute time

‣ ML+FPGA as co-processor can reduce HCAL local
reco. compute time by up to ×16

‣ Tested using AWS FPGAs

Full tracking
30%

Pixel tracking
9%

Jet/MET
3%

E/Gamma
4%

ECAL
8%

HCAL
16%

I/O & logic
15%

Muon
7%

PF & Tau
8%

Summary
• Exploiting new paradigms to improve and accelerate

HL-LHC trigger algorithms with applications for the
future computing model in HL-LHC

• Algorithm acceleration with FPGAs programmed in C
• High speed interconnect of computing elements
• New adaptable hardware

• Strengthening connections and familiarity with new
industry tools and technologies

• Developed techniques applicable in ATLAS, DUNE,
Accelerator controls, and more (with interested
collaborators)

XILINX announced (end of 2018) their 7nm technology (Versal) which does parallel,
sequential processing and AI. White Paper: Versal ACAPs (https://bit.ly/2IZf1BS)

WP505 (v1.0) October 2, 2018 www.xilinx.com 10

Versal: The First Adaptive Compute Acceleration Platform (ACAP)

As Data Center applications for neural networks continue to get more advanced, multiple neural
networks can be chained together, greatly increasing the need for low latency neural network
performance. For example, real-time spoken word translation requires speech-to-text, natural
language processing, a recommender system, text-to-speech, and then speech synthesis [Ref 2].
This means the neural network's portion of the total latency budget is multiplied by 5 for this
application.

As the number of real-time applications continues to increase, it is important for Data Center
customers to choose a technology that can scale to keep up with their future needs. Two trends are
emerging:

• Deterministic latency is becoming increasingly important to improve software design efficiency
[Ref 3].

• Neural network latency requirements continue to tighten as increasingly complex interactions
are modeled (human interaction, financial trading), and safety-critical applications rise in
importance (e.g., automotive, industrial).

These two requirements necessitate the removal of batching, which causes the performance of
fixed, cache-based memory hierarchy of CPU and GPU-based solutions to degrade significantly.
Even a high-end CPU caps out at 5ms latency, and below 7ms, even high-end GPUs degrade
significantly in performance. Only the Versal ACAP achieves sub-2ms latency with acceptable
performance. See Figure 8.

X-Ref Target - Figure 8

Figure 8: Real-Time GoogLeNet Performance (< 2ms Latency) = 8X Higher Than High-End GPU (Nvidia)1, 2

1. Measured on Xeon Platinum 8124 Skylake, c5.18xlarge AWS instance, Intel Caffe: https://github.com/in-
tel/caffe.
2. V100 numbers taken from Nvidia Technical Overview, "Deep Learning Platform, Giant Leaps in Performance
and Efficiency for AI Services."

WP505_08_092818

High End CPU High End GPU Versal AI Core

G
oo

gL
eN

et
 v

1
(I

M
G

/s
ec

)

Machine Learning Inference
Latency Sensitive (<2ms)

WP505 (v1.0) October 2, 2018 www.xilinx.com 1

© Copyright 2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx
in the United States and other countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used under license. AMBA, AMBA Designer, ARM, ARM1176JZ-S,
CoreSight, Cortex, and PrimeCell are trademarks of ARM in the EU and other countries. All other trademarks are the property of their respective owners.

Introducing Versal ACAP, a fully software-programmable,
heterogeneous compute platform that combines Scalar
Engines, Adaptable Engines, and Intelligent Engines to
achieve dramatic performance improvements of up to 20X
over today's fastest FPGA implementations and over 100X
over today's fastest CPU implementations—for Data Center,
wired network, 5G wireless, and automotive driver assist
applications.

White Paper: Versal ACAPs

WP505 (v1.0) October 2, 2018

Versal:
The First Adaptive Compute

Acceleration Platform (ACAP)

ABSTRACT
Recent technical challenges have forced the industry to explore options
beyond the conventional “one size fits all” CPU scalar processing solution. Very
large vector processing (DSP, GPU) solves some problems, but it runs into
traditional scaling challenges due to inflexible, inefficient memory bandwidth
usage. Traditional FPGA solutions provide programmable memory hierarchy,
but the traditional hardware development flow has been a barrier to broad,
high-volume adoption in application spaces like the Data Center market.
The solution combines all three elements with a new tool flow that offers a
variety of different abstractions—from framework to C to RTL-level coding—
into an adaptive compute acceleration platform (ACAP). This new category of
devices, Xilinx’s Versal™ ACAPs, allows users to customize their own domain-
specific architecture (DSA) from these three programmable elements.

WP505 (v1.0) October 2, 2018 www.xilinx.com 9

Versal: The First Adaptive Compute Acceleration Platform (ACAP)

Data Center Artificial Intelligence: Machine Learning Inference

Acceleration

As artificial intelligence starts to pervade modern life, the demand for enhanced compute
efficiency has begun to drive innovation in the semiconductor space—but it is difficult for any
single implementation to handle with maximum efficiency. This is one area where the tight
coupling between vector processing and programmable hardware is invaluable.

There has been a lot of attention on the precision of the compute unit (FP32 versus FP16 versus
INT16 versus INT8, etc.), but inattention to the divergence in memory hierarchy requirements
between network types has caused many of the most recent AI inference engines to drop sharply
in efficiency for different networks. For example, the current state-of-the-art machine learning
inference engines require four HBM memories (7.2Tb/s of external memory bandwidth) to reach
their peak performance—but their cache-based memory hierarchy only operates at around
25–30% efficiency and creates significant latency uncertainty for real-time applications. The
solution is to augment the vector processing performed by intelligent engines with a
programmable memory hierarchy, precisely optimized for each network type and enabled by the
massive parallelism of FPGA logic.

For example, a Versal platform implementation of GoogLeNet enables extraordinarily high
performance for latency insensitive applications, 43X more throughput than today's top-of-the-line
Skylake Platinum CPU(2), and about 3X today's top-of-the-line GPU [Ref 2]—all at much lower
power. See Figure 7.

2. Xeon Platinum 8124 Skylake, c5.18xlarge AWS instance, Canonical, Ubuntu, 16.04LTS, AMD64 Xenial image build on 2018-08-14,
Intel Caffe. Git Version: a3d5b02, run_benchmark.py unmodified.

X-Ref Target - Figure 7

Figure 7: GoogLeNet Performance (< 7ms Latency) = 43X Higher Than a High-End CPU1, 2

1. Measured on Xeon Platinum 8124 Skylake, c5.18xlarge AWS instance, Intel Caffe: https://github.com/in-
tel/caffe.
2. V100 numbers taken from Nvidia Technical Overview, "Deep Learning Platform, Giant Leaps in Performance
and Efficiency for AI Services."

WP505_07_092818

High-End CPU High-End GPU Versal AI Core ACAP

G
oo

gL
eN

et
 v

1
(I

M
G

/s
ec

)

Machine Learning Inference
Latency Insensitive (High Batch)

https://bit.ly/2IZf1BS

