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Accelerating Reconstruction on advanced hardware architectures: 
Tracking on accelerators

Graph Neural Networks for reconstruction
Accelerating ML inference 



• Tracking takes up 58% of offline 
reconstruction time per event

• Performed using Kalman filter 
algorithm: well-understood and 
excellent performance

• Time to reconstruct tracks grows 
exponentially with pileup

Charged particle track reconstruction in CMS
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CMS 2018 high PU run (PU 136)
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Figure 1. CPU time per event
versus instantaneous luminosity,
for both full reconstruction and
the dominant tracking portion.
Simulated data with pile-up of
25 primary interactions per
event (PU25) corresponds to the
data taken during 2012, while
pile-up of 140 (PU140)
corresponds to the low end of
estimates for the HL-LHC era.

as Intels Xeon Phi and NVIDIA general-purpose graphics processing units (GPGPUs). In this
investigation we have followed a staged approach, starting with Intel Xeon and Xeon Phi Knights
Corner (KNC) architectures, an idealized detector geometry, and a series of simpler “warm-up”
exercises such as track fitting. This simplified problem domain was used to develop our tools,
techniques, and understanding of the issues scaling track finding to many cores. The warm-up
exercises let us develop useful components while also allowing the physicists to become familiar
with the computational tools and techniques, while the computational experts learned about the
problem domain. Armed with the results of those initial investigations, we are now addressing
more realistic detector geometries and event content, as well as adding new platforms. This
paper gives an overview of our progress to date and assesses the e↵ectiveness of our staged
approach.

2. Kalman Filter Tracking

Our targets for parallel processing are track reconstruction and fitting algorithms based on the
Kalman Filter [3] (KF). KF-based tracking algorithms are widely used to incorporate estimates
of multiple scattering directly into the trajectory of the particle. Other algorithms, such as
Hough Transforms and Cellular Automata [4][5], are more naturally parallelized. However,
these are not the main algorithms in use at the LHC today. The LHC experiments have an
extensive understanding of the physics performance of KF algorithms; they have proven to be
robust and perform well in the di�cult experimental environment of the LHC.

KF tracking proceeds in three main stages: seeding, building, and fitting. Seeding provides
the initial estimate of the track parameters based on a few hits in the innermost regions of the
detector; seeding is currently out of scope for our project. Track building projects the track
candidate outwards to collect additional hits, using the KF to estimate which hits represent the
most likely continuation of the track candidate. Track building is the most time consuming step,
as it requires branching to explore multiple candidate tracks per seed after finding compatible
hits on a given layer. When a complete track has been reconstructed, a final fit using the KF is
performed to provide the best estimate of the track’s parameters.

To take full advantage of parallel architectures, we need to exploit two types of parallelism:
vectorization and parallelization. Vector operations perform a single instruction on multiple data
(SIMD) at the same time, in lockstep. In tracking, branching to explore multiple candidates per
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• 3 year SciDAC project to speed up HEP event reconstruction, collaborating 
with group funded by IRIS-HEP

• Kalman filter is hard to optimize: branching required to explore multiple 
candidates, different numbers of tracks/event and hits/track, requires 
complex data management and bookkeeping 

• Custom “Matriplex” library to efficiently vectorize small matrix operations

Sci-DAC4: HEP Event Reconstruction with Cutting Edge 
Computing Architectures
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Fermilab, U. of Oregon, UC San Diego, Cornell, Princeton
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Physics Results
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Timing Results
4.3x speedup* compared to 
CMSSW. 7x speedup if data 

conversions are ignored
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* On a single thread
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Exploring two approaches for GPU implementation:
• Option 1: Write algorithm using CUDA 
• Option 2: Code portability tools such as OpenACC

– Collaborating with ORNL and the SciDAC RAPIDS Institute

Next steps:
• Continue to improve algorithm’s timing performance
• Finishing optimizing physics performance, particularly for 

difficult-to-reconstruct tracks such as those with fewer hits
• Integrate algorithm into CMS High Level Trigger and test 

algorithm online during Run 3 of the LHC

Next steps and future work
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• HL-LHC provides enormous instantaneous luminosity (~1e35/cm2/s)
– Challenges for radiation tolerance, bandwidth, and pattern recognition 
– Pattern recognition difficult due to many overlapping patterns
– Particle density & detector segmentation increase ~order of magnitude
– need a new arsenal of reconstruction tools

Solving HL-LHC Detector Challenges with ML
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HGCal hits

Particle density and data rate

§ With an instantaneous peak luminosity up to 7.5 x 1034 cm-2s-1 the 
mean number of interactions per bunch crossing (i.e. every 25 ns) is 
200 (pile-up) à high particle density and data rate 

§ Finely segmented detectors and fast readout electronics are 
needed to keep low hit occupancy [hits/cm2/sec]

L.	Gonella	|	Particle	Physics	Seminar,	University	of	Birmingham	|	10	October	2018 6

June 13, 2019 Advanced Methods for Data Processing and Reconstruction | DOE Briefing



• Finding an ML algorithm that can perform a reconstruction task is not 
straightforward
– Fully connected networks, CNNs not well adapted to irregular detector geometries 

(gaps, cracks, etc…)
• Spend valuable resources encoding ‘dead’ space or otherwise impertinent information

– The ‘representation’ of the detector is hidden from these networks because of their 
strange geometries

– Networks still function well but could be improved

Using ML for Reconstruction

7

Reconstruction task: associate detector 
hits into usable physics objects

arXiv:1810.06111
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Figure 4. Diagram of the Gaussian hit predictor model which takes a sequence of three-dimensional
coordinates as input and produces bi-variate Gaussian probability distributions as next-step predictions.
The architecture is the same as the basic hit predictor but the model provides additional output which
parameterizes the Gaussian covariance matrix.

Figure 5. Pull distributions for the Gaussian hit predictor predictions with Gaussian fits. There are
some clearly non-Gaussian e↵ects in the pulls but the fitted width is consistent with one which means
the model’s uncertainty predictions are sensible.

Figure 6. An example track and Gaussian hit predictor model’s predictions with uncertainties. The
predictions follow the track well and the uncertainties describe the trajectory wiggles in the coarse
outer detector layers.

2.3 Building tracks

For a simple test of these models, we use them to extrapolate and build tracks in low-
occupancy events. We construct a track “seed” using the initial three hits of a true track,
then use the RNN models to make forward predictions and select the closest (or highest-
scoring) hit in the event on each successive layer. An example track which is correctly fully
reconstructed using the simple RNN hit predictor model is shown in figure 7. In this simpli-
fied scenario both models are very good at making predictions for selecting candidate hits.
The resulting hit selection accuracies measured are 99.93% and 99.98% for the simple and
Gaussian models, respectively.

For a proper assessment of these models, a full combinatorial tree search algorithm with
full occupancy collision data should be used. This is currently left for future work.

Figure 7. An example track properly reconstructed using the basic hit predictor model in an event.

3 Track finding with Graph Neural Networks

Another way to represent tracking data with points is as a graph of connected hits. This
is illustrated in figure 8. In this representation, we can apply a powerful class of methods
from Geometric Deep Learning [6] known as Graph Neural Networks (GNNs). The graph
can be constructed by connecting plausibly-related hits using geometric constraints or some
kind of pre-processing algorithm like the Hough Transform. A GNN model can learn on this
representation and solve tasks with predictions over the graph nodes, edges, or global state.

We have developed two applications using Graph Neural Networks. The first is a binary
hit classification model which learns to identify one track in a partially-labeled graph by
classifying the graph nodes. The second is a binary segment classification model which
learns to identify many tracks at once by classifying the graph edges (hit pairs). The inputs to
these models are the node features (the 3D hit coordinates) and the connectivity specification.

3.1 Graph neural network architecture

The architecture we have developed is similar to that of Interaction Networks [7] but is cus-
tomized for our purposes. Two main components operate locally on the graph:

https://arxiv.org/abs/1810.06111


Figure 8. Illustration of a graph representation of track hit data. Hits are connected on adjacent layers
if they are compatible according to some criteria.

• An EdgeNetwork computes weights for every edge of the graph using the features of the
start and end nodes.

• A NodeNetwork computes new features for every node using the edge weight aggregated
features of the connected nodes on the previous and next detector layers separately as well
as the nodes’ current features.

Both the EdgeNetwork and NodeNetwork are implemented as Multi-Layer Perceptrons
(MLPs) with two layers each and hyperbolic tangent hidden activations.

The full Graph Neural Network model consists of an input transformation layer followed
by recurrent alternating applications of the EdgeNetwork and NodeNetwork. The architec-
ture for the segment classification network is illustrated in figure 9. With each iteration of
the networks, the model propagates information through the graph, adaptively learning to
strengthen important connections and weaken useless or spurious ones.

Figure 9. Diagram of the Graph Neural Network model which begins with an input transformation layer
and has a number of recurrent iterations of alternating EdgeNetwork and NodeNetwork components. In
this case, the final output layer is the EdgeNetwork, making this a segment classifier model.

3.2 Graph hit classification

The hit classification model performs binary classification of the nodes of the graph using
labels to specify three seed hits. The graphs are constructed by taking four hits on each
detector layer in the region around the true track location and connecting all hits together on
adjacent layers. The model uses seven graph iterations followed by a final classification layer
with sigmoid activation that operates on every node to predict whether the nodes belong to
the target track or not.

Results for the model are shown in figure 10 and an example prediction is shown in
figure 11. Using a threshold on the model score of 0.5 gives 99.2% purity, 97.9% e�ciency,
and overall accuracy of 99.4%.

Figure 2. Left: An example of computing an edge feature, eij , from a point pair, xi and xj . In this example, h⇥() is instantiated using
a fully connected layer, and the learnable parameters are its associated weights and bias. Right: Visualize the EdgeConv operation. The
output of EdgeConv is calculated by aggregating the edge features associated with all the edges emanating from each connected vertex.

2. Related Work
Hand-Crafted Features Various tasks in geometric data
processing and analysis — including segmentation, clas-
sification, and matching — require some notion of local
similarity between shapes. Traditionally, this similarity is
established by constructing feature descriptors that capture
local geometric structure. Countless papers in computer vi-
sion and graphics propose local feature descriptors for point
clouds suitable for different problems and data structures. A
comprehensive overview of hand-designed point features is
out of the scope of this paper, but we refer the reader to
[51, 15, 4] for comprehensive discussion.

Broadly speaking, one can distinguish between extrin-
sic and intrinsic descriptors. Extrinsic descriptors usually
are derived from the coordinates of the shape in 3D space
and includes classical methods like shape context [3], spin
images [17], integral features [27], distance-based descrip-
tors [24], point feature histograms [39, 38], and normal his-
tograms [50], to name a few. Intrinsic descriptors treat the
3D shape as a manifold whose metric structure is discretized
as a mesh or graph; quantities expressed in terms of the met-
ric are by definition intrinsic and invariant to isometric de-
formation. Representatives of this class include spectral de-
scriptors such as global point signatures [37], the heat and
wave kernel signatures [48, 2], and variants [8]. Most re-
cently, several approaches wrap machine learning schemes
around standard descriptors [15, 42].

Learned Features. In computer vision, approaches rely-
ing on ‘hand-crafted’ features have reached a plateau in per-
formance on challenging image analysis problems like im-
age recognition. A breakthrough came with the use of con-
volutional neural networks (CNNs) [22, 21], leading to an
overwhelming trend to abandon hand-crafted features in fa-
vor of models that learn task-specific features from data.

A basic CNN architecture is the deep neural network,
which interleaves convolutional and pooling layers to ag-
gregate local information in images. This success of deep
learning for images suggests the value of adapting related

insight to geometric data like point clouds. Unlike images,
however, geometric data usually are not on an underlying
grid, requiring new definitions for building blocks like con-
volution and pooling.

Existing 3D deep learning methods can be split into
two classes. View-based and volumetric representations
exemplify techniques that try to “place” geometric data
onto a grid and apply existing deep learning algorithms
to the adapted structure. Other methods replace the stan-
dard building blocks of deep neural architectures with spe-
cial operations suitable for unstructured geometric data
[29, 6, 31, 34, 36]. We provide details about the closest
techniques to ours below.

View-based Methods View-based techniques represent a
3D object as a collection of 2D views, to which standard
CNNs used in image analysis can be applied. Typically,
a CNN is applied to each view and then the resulting fea-
tures are aggregated by a view pooling procedure [47].
View-based approaches are also good match for applica-
tions where the input comes from a 3D sensor and repre-
sented as a range image [53], in which case a single view
can be used.

Volumetric Methods Voxelization is a straightforward
way to convert unstructured geometric data to a regular
3D grid over which standard CNN operations can be ap-
plied [30, 54]. These volumetric representations are often
wasteful, since voxelization produces a sparsely-occupied
3D grid. Time and space complexity considerations limit
the resolution of the volumetric grids, yielding quantization
artifacts. Recent space partition methods like k-d trees [20]
or octrees [49] remedy some resolution issues but still rely
on subdivision of a bounding volume rather than local ge-
ometric structure. Finally, [35] studied a combination of
view-based and volumetric approaches for 3D shape classi-
fication.
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Graph Neural Networks in Tracking
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Figure 8. Illustration of a graph representation of track hit data. Hits are connected on adjacent layers
if they are compatible according to some criteria.

• An EdgeNetwork computes weights for every edge of the graph using the features of the
start and end nodes.

• A NodeNetwork computes new features for every node using the edge weight aggregated
features of the connected nodes on the previous and next detector layers separately as well
as the nodes’ current features.

Both the EdgeNetwork and NodeNetwork are implemented as Multi-Layer Perceptrons
(MLPs) with two layers each and hyperbolic tangent hidden activations.

The full Graph Neural Network model consists of an input transformation layer followed
by recurrent alternating applications of the EdgeNetwork and NodeNetwork. The architec-
ture for the segment classification network is illustrated in figure 9. With each iteration of
the networks, the model propagates information through the graph, adaptively learning to
strengthen important connections and weaken useless or spurious ones.

Figure 9. Diagram of the Graph Neural Network model which begins with an input transformation layer
and has a number of recurrent iterations of alternating EdgeNetwork and NodeNetwork components. In
this case, the final output layer is the EdgeNetwork, making this a segment classifier model.

3.2 Graph hit classification

The hit classification model performs binary classification of the nodes of the graph using
labels to specify three seed hits. The graphs are constructed by taking four hits on each
detector layer in the region around the true track location and connecting all hits together on
adjacent layers. The model uses seven graph iterations followed by a final classification layer
with sigmoid activation that operates on every node to predict whether the nodes belong to
the target track or not.

Results for the model are shown in figure 10 and an example prediction is shown in
figure 11. Using a threshold on the model score of 0.5 gives 99.2% purity, 97.9% e�ciency,
and overall accuracy of 99.4%.
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• Graph-nets can be extended for use in calorimetry straightforwardly (same as tracking)
– Same toolkit of fast algorithms can be used to build clusters from network outputs
– Performance outclasses current human made algorithm for HGCal

• Particle Flow is also a graph segmentation task, next target after calorimetry
– Associate tracks and calorimeter clusters best representation of collider event

HL-LHC Calorimetry and Particle Flow
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example of cluster graphs in HGCal

arXiv:1902.07987

LDRD pilot work
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• Graph neural networks provide a powerful new toolkit for 
reconstruction
– Same network architectures can be applied in tracking, 

calorimetry, higher-level event reconstruction
– Combined with appropriate efficient algorithms to post-process 

the data, much faster than typical task-specific algorithms
– Cross cutting through detector types and frontiers genuinely 

possible
• Next challenge is to make these tools available in 

experiment computing environments
– Develop networks, integrate tools, accelerate inference
– Target offline computing, software trigger, and hardware 

triggers to integrate graph networks and bring these powerful 
new algorithms to bear in every aspect of experiments

Next steps and future work
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ML inference on heterogeneous computing architectures
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Moore’s Law falling off
…but Dennard Scaling ended in 2010

Single threaded performance not improving
Circa ~2005: “The Era of Multicore”

→ Today: Transition to the “Era of Specialization”?  (c.f. Doug Burger)



Heterogeneous Computing
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BIG machine learning in physics
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Fig. 5: [Caption for nova] Example visualizations of simulated neutrino events correctly classified by our ResNet-50
model with probability greater than 0.9: electron neutrino (left), muon neutrino (middle), and tau neutrino (right).
The top and bottom rows are the top and side views from the NOvA detector. (NOvA’s beam energy and baseline
prohibit long baseline tau neutrino appearance searches, but the event is shown for illustration purposes.)

Fig. 6: A schematic of the Microsoft Brainwave acceleration platform [17].

is natural for the Brainwave system, which is capable
of load balancing of service requests.

One may also consider a case where the FPGA co-
processor resources are located at the same datacenter,
on-premises, as the CPUs, as a so-called edge resource2.
This is illustrated in Fig. 8. In this scenario, the same
gRPC interface protocols are used to communicate with
the FPGA hardware, and the software access for fast
inference is unchanged. To benchmark this scenario, we
run our application on a virtual machine (VM) in the
cloud datacenter. Results comparing both these scenar-

2 we refer synonymously to a edge service being accessed
on-premises, or on-prem

ios with other hardware from the literature are pre-
sented in Section 5.

4.2 Particle physics computing model with services

For our demonstration study, we use the CMS exper-
iment software framework, CMSSW [45]. This software
uses Intel Thread Building Blocks [46] for task-based
multithreading. A typical module, such as those de-
picted in Fig. 1, has a produce function that obtains
data from an event, operates on it, and then outputs
derived data. This pattern assumes that all of the op-
erations occur on the same machine.

Open top quark dataset with ResNet50
https://arxiv.org/abs/1904.08986

Noνa event classification 
with CNNs
https://arxiv.org/abs/1604.01444 DES lensing with CNNs

https://arxiv.org/abs/1810.01483

Tracking and clustering 
with Graph NNs 

https://arxiv.org/abs/1810.06111
https://arxiv.org/abs/1902.07987

https://arxiv.org/abs/1904.08986
https://arxiv.org/abs/1604.01444
https://arxiv.org/abs/1810.01483
https://arxiv.org/abs/1810.06111
https://arxiv.org/abs/1902.07987


Non-disruptive integration of heterogenous computing  resources into the HEP 
computing model

Deploy as a service (many CPUs to few FPGAs) is much more cost-effective

Accelerated ML as a Service
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Integrate Microsoft Azure ML 
acceleration with Intel FPGAs 
into CMSSW
ResNet50 for top tagging at LHC and event 
classification at Noνa

Measured latency of Azure ML as 
a service to be 30 (175) times 
faster than inference in CPUs 
with CMSSW
Includes round trip time
Multi-threaded non-blocking CMSSW 
feature `ExternalWork`

Proof-of-concept study
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https://arxiv.org/abs/1904.08986
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Proof-of-concept paper
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https://arxiv.org/abs/1904.08986

Collaborations and expertise growing:
CMS, ATLAS, Noνa, DUNE, Industry

Special thanks for seed 
funding support:

US-CMS ops
FNAL LDRD

https://arxiv.org/abs/1904.08986


• Offline reconstruction is projected to dominate processing needs in HL-
LHC

• Tracking largest competitor: mkFit project made significant process in 
vectorizing and speeding up pattern recognition
– On the way to vectorized implementation of Kalman Filter on GPUs 

and other advanced architectures

• Machine Learning excellent candidate to speed up reconstruction by 
revolutionizing approach
– Graph Neural Networks used for calorimetry and particle flow

• Processing needs for inference of large networks not small
– Accelerated inference on FPGAs, run as a service, investigated to 

speed up reconstruction 

Summary
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