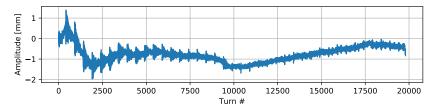
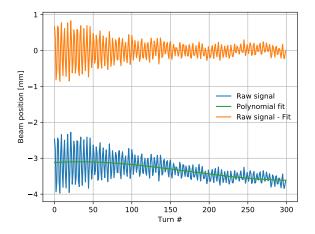
Chromaticity measurements at the FNAL booster


Michele Carlà et al.

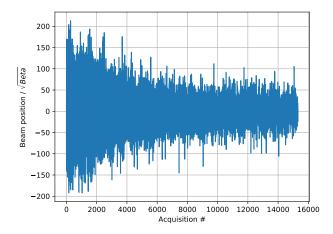
02 Jul 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで


Chromaticity measurements at the FNAL booster

- Two separated chromaticity scan acquired
- Repeated for the vertical and horizontal planes (4 scans total)
- The betatron motion was excited with a pinger
- The tune was measured several times at different point in the cycle
- Determine the evolution of the linear chromaticity along the cycle
- Investigate non-linear chromaticity

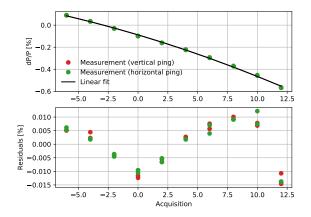
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで


Orbit change is visible during some of the tune excitation

The orbit is calculated with a third order fit

► The signal is "straightened" by removing the orbit

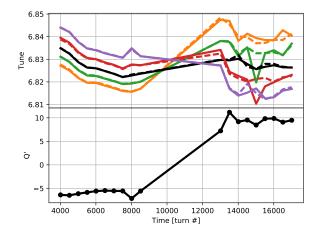
Signal from all the BPMs is combined in one single dataset


Turn-by-turn Signal from 51 BPMs is combined in one single dataset

프 > 프

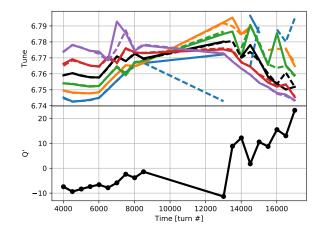
< 🗇 🕨

Tune is determined using the Laskar method (i.e. NAFF)


Energy is determined from the dispersive orbit

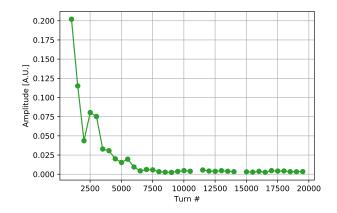
- The 2 datasets (horizontal and vertical pings) are treated separately ...should provide identical results
- > Plot shows "radial-steering vs measured energy", a linear fit shows any mismatch

Some higher order pattern is visible in the residuals


Vertical linear chromaticity

- Each color represents a different energy settings
- For each energy the tune is acquired 2 times (solid/dashed line)
- At injection, transition crossing and extraction the energy is set to nominal \rightarrow No measurement available at these points

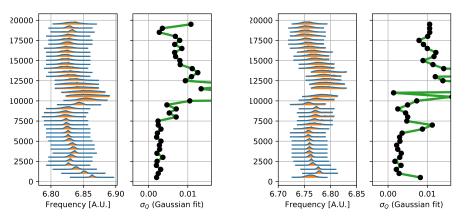
990


Horizontal linear chromaticity

The horizontal measurement is worst respect to the vertical one

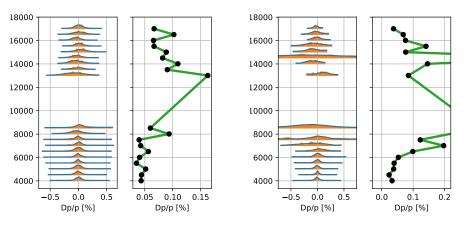
Sometime a strong disagreement between the 2 datasets (solid/dashed) is visible ...maybe because of the higher chromaticity

Betatron amplitude

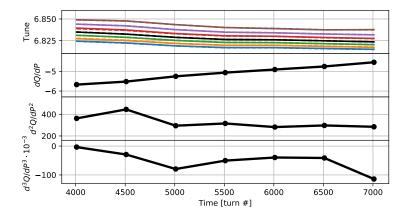


- The horizontal measurement is worst respect to the vertical one
- Sometime a strong disagreement between the 2 datasets (solid/dashed) is visible ...maybe because of the higher chromaticity

Betatron motion decoherence


Vertical

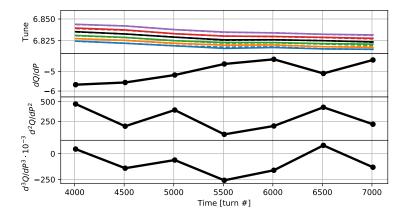
Horizontal


- The Fourier spectrum is calculated for each excitation
- The width (σ_Q) of the tune-peak is obtained from a Gaussian fit

Energy spread from turn-by-turn spectra Vertical Horizontal

- The Fourier spectrum amplitude is proportional to the energy distribution
- The width of the betatron peak provides information on the energy spread

Vertical non-linear chromaticity before transition


- Energy scan ranges from -6mm to +6mm
- Only measurements before transition are good enough
- The second order chromaticity (octupole-like) looks quite constant

< ∃ →

э

► The third order chromaticity (decapole-like) is a bit more "noisy"

Horizontal non-linear chromaticity before transition

- Energy scan ranges from -6mm to +4mm
- Only measurements before transition are good enough
- The second order chromaticity (octupole-like) looks similar to the horizontal

3

Sac

► The third order chromaticity (decapole-like) is ...mostly noise

What we learnt?

- Radial steering wider than 6mm did not provided clean tune measurements
- Lowering the linear chromaticity could help with decoherence and allowing to resolve better higher order terms
- Reducing number of injections (lower energy spread?) could help This would also help with beam stability in case of lower chromaticity
- Energy has been determined by fitting the dispersive orbit
 While the result looks robust the method suffers from non-linearities in the optics and BPMs
- Measurement of the RF frequency would allow for a simple and robust determination of the energy