Photoelectron Laser and Laser Positioning System

Jelena Maricic University of Hawaii DUNE Calibration Workshop June 2019

Photoelectron Laser (PhEL) Overview

- Photoelectron laser (PhEL) consists of:
 - Small metal targets (dots and strips) attached to CPAs in predetermined locations
 - UV light source (UV laser) used to illuminate metal targets that release electrons via photoelectric effect

Photoelectron Laser (PhEL) Benefits

- Cost-effective system main cost are optical fibers used to deliver UV light to TPC and illuminate targets (~\$60k per SP FD module).
- PhEL generates well localized electron clouds on the CPA at predetermined locations released after every laser trigger.
- Thus, PhEL provides electron sources with well know position and time of release.
- Generated electron clouds drift in the TPC electric field until they are collected on the APA.

Photoelectron Laser for TPC calibration

• Thanks to PhEL we can measure electron drift time throughout detector volume:

$$t_{electron\ drift} = t_{electron\ detection\ on\ APA} - t_{laser\ pulse\ trigger}$$

- \rightarrow PhEL provides means to measure and monitor electron transport in the TPC.
- PhEL enables:
 - detector wake-up to quickly diagnose if the detector is alive, since the rate of cosmic rays is low underground
 - **precise** determination of electron drift velocity throughout the TPC volume
 - measurement of distortions in the electron drift due to inhomogeneous and misaligned electric field
 - vertex reconstruction calibration on CPAs
 - Secondary goal: measurement of transverse size of ionization with photoelectric strips

Photoelectron targets

- Plan to use the same NdYag laser 266 nm with 4.66 eV photons --> no cost associated with buying lasers.
- Photoelectron candidates for targets based on experiences in the past

Target material	Work function (eV)	λ _{max} (nm)	Comparison to 266 nm NdYag	Oxidization in air	Type of oxidization
Gold	5.1 – 5.47	243 - 226	<	No	None
Nickel	5.04 - 5.35	246 - 232	<	Yes	Surface layer
Silver	4.26 - 4.74	291 - 262	>	Yes	Surface layer
Aluminum	4.06 - 4.26	305 - 291	>	Yes	Surface layer

Note: aluminum develops surface layer (70 Angstrems), does not change over time (AI_2O_3 work function 3.9.

Aluminum is the preferred candidate – excellent experience from T2K TPC where photoelectron laser was implemented and successfully utilized.

Photoelectron Laser Implementation

- 5 mm and 10 mm diameter target discs placed on the field shaping strips on CPA
- 0.5 x 10 cm target strips (if OK for HV on CPA) placed on the field shaping strips on CPA
- Optical fibers with diffuser routed to APA and fastened between APA planes to illuminate the photoelectron targets located across the TPC on the CPA
- Details of interface with APA under consideration
- If it is possible to mount fibers on the sides of APAs, that would help further reduce the number of fibers and associated cost.
- Utilize DSS ports to insert the fibers in the TPC

Area Illumination from a Single Fiber

- Pulse power 50 mJ (can go up to 100 mJ without large cost increase), pulse length 5 ns
- Efficiency of injecting light in the UV fiber 2% (rather conservative estimate)
- Number of photons per pulse 6.7x10¹⁴ photons/pulse
- Assume 5 m radius illumination on CPA (optical element diffusing light coming out of fiber)
- Phototarget radius 5 mm (2.5 mm)
- Quantum efficiency 5x10⁻⁶ at 266 nm
- Attenuation in 20 m of optical fiber ~ 7.5 at 0.22 dB/m at 266 nm
- Number of photoelectrons from a single target 9000 (2500+)
- Note 1: Signals on APAs identified by time correlation with trigger pulse
- Note 2: Neglect Rayleigh scattering (40 m at 266 nm in Ar)
- Note 3: Further tuning of the photoelectron yield achieved via tuning of the laser power

Required number of fibers

- We need several thousand photons per target
- Single fiber from a single laser can be used to illuminate 10 m diameter area (due to the Gaussian shape of the beam this will be less)
- Baseline for fiber locations:

CPA Illumination cartoon

- along central line between upper and lower level APAs
- on the top of upper APAs (pointing down)
- On the bottom of lower APAs (pointing up)

Locations

- Utilize existing track lasers for illumination of photoelectron targets
- Two fibers per laser.
- 6 laser fibers along central line + 6 laser fibers on top and 6 on the bottom for each CPA side. The total number of fibers is 18 x 4 = 72.
- Fiber routing plan needs to be finalized.
- Assume average 20 m fiber length (vary from 10 30 m).
- Excellent TPC resolution allows for illumination of large number of targets in parallel.

Multiplexing option (under consideration)

- We are also considering use of optical multiplexer
- Advantages:
 - Illuminate each of the 4 volumes with a single laser
 - Single trigger signal
 - Less variation in laser pulse
- Disadvantages:
 - Longer calibration sequence
 - Longer laser fibers added cost and complicated routing
 - Added cost of multiplexers.

Photoelectron Target Locations

- Targets will be placed on the corners of Resistive Panels (RPs) that are 1.2 x 2 m in dimensions on field shaping strip surfaces.
- 20 dot targets with 10 cm spacing placed as shown
- Small and large targets
- 2 0.5 x 10 cm strips per RP
- Targets placed on every RP
- Total number of RPs per SP module is 600
- Total number: 12,000 dot targets and 1200 strip targets.

• Note: this is a baseline, but can easily be changed to smaller or larger number of targets in response to simulation outcomes that will guide detailed design.

Detector Illumination: diffuser vs bare fiber

- Kapton that composes majority of CPA undergoes photoelectric effect, albeit with three orders of magnitude lower efficiency at 266 nm when compared to Ag or Al in LAr.
- In case Kapton turns out to be a significant source of photoelectron noise, we need to reduce exposure to 266 nm light.
- Kapton photoelectron noise mitigation: replace diffusers with bare fibers.
- With typical UV fiber, half-opening angle is 10° which is 1.3 m diameter illumination → illuminate a single corner where 4 RPs meet.
- In this case, keeping the number of fibers the same, there will be 18 calibration points in each of 4 volumes.
- Single laser can illuminate all 18 fibers at once.

Calibration Campaign

- Assuming parallel running of lasers, photoelectron targets in 3 out of 4 volumes can be illuminated at once, assuming that laser firing can be coordinated or calibrated with sufficient precision and that volume 2 and 3 share lasers
- Lasers operate at 10 Hz frequency.
- Assuming 10000 pulses per laser, about 15 minutes is needed per laser.
- If we utilize one multiplexer per each volume, then 1 hour per volume is sufficient.
- Depending whether the lasers are run in parallel or series, the entire calibration campaign will take between 15 minutes or up to 1 – 5 hours, depending on the final calibration scheme.

Budget Estimate of the Photoelectron Laser

• Given the ability to use track laser for the photoelectron calibration, the main cost of the system are fibers

Fiber core (um)	Bending Radius (mm)	Cost per meter (\$)	Total cost for 1440 m (\$)
300	30	19	27,360
400	50	29	41,760
600	65	50	36,000

Item	Cost (\$)	
Optical fibers	42,000	
Target production, diffusers, connectors	5,000	
Multiplexers(3)	9,000 (if needed)	
Contingency (10%)	5,000	
Total	52,000 (61,000 with multiplexers)	

Review Committee Charge Questions

Charge Question: Is the current proposal to add photoelectron targets to the cathode plane a useful addition to the primary system?

• Thanks to PhEL we can measure electron drift time throughout detector volume:

$$t_{electron\ drift} = t_{electron\ detection\ on\ APA} - t_{laser\ pulse\ trigger}$$

- \rightarrow PhEL provides means to measure and monitor electron transport in the TPC.
- PhEL enables:
 - detector wake-up routine to quickly diagnose if the detector is alive, since the rate of cosmic rays is low underground
 - **precise** determination of electron drift velocity throughout the TPC volume
 - measurement of distortions in the electron drift due to inhomogeneous and misaligned electric field
 - vertex reconstruction calibration on CPAs
 - Secondary goal: measurement of transverse size of ionization with photoelectric strips

Charge Question: Are there any potential risks associated with installing photoelectron targets on CPA or from the light that they emit?

- Potential risk: Random photoelectrons from exposed aluminum surfaces hit by 266 nm laser light
 - Reflection coefficient at 266 nm from Al is 90%
 - Abundant scattered light will hit exposed aluminum surfaces such as FC
 - Photoelectron quantum efficiency for aluminum at 266 nm is of the order 10⁻⁶

Emission of photoelectrons from aluminum surfaces in the TPC is negligible

Charge Question: Are there any potential risks associated with installing photoelectron targets on CPA or from the light that they emit?

- **Potential risk:** Random Argon Scintillation Light (9.68 eV) inducing photoelectric effect from photoelectron targets
 - Argon scintillation light has 9.68 eV energy- far above work function of any metal.
 - Utilized photon detector (PD) simulation to estimate electron noise coming from argon scintillation photons (due to radiological backgrounds) hitting the photocathode targets.
 - PD simulations predicts number of photoelectrons on SiPMs

 \rightarrow convert # of photoelectrons on SiPMs to number of photons per area of photon detector module \rightarrow number of photons per surface

Photon Rate Calculation

Noise in the detector induced by photoelectron targets is negligible considering low quantum efficiency of aluminum.

Charge Question: Are there any potential risks associated with installing photoelectron targets on CPA or from the light that they emit?

- From Bo Yu: "Electron emission from carbon-loaded Kapton is low but non-zero. At UV 266nm, electron emission is linear with laser intensity. At room temp in vacuum, its quantum efficiency (QE) is ~10⁻⁸ drops to below ~10⁻⁹ in cold, its QE is expected to continue drop in LAr."
- Since Al is similar to Ag, the quantum efficiency is 5,000 smaller for Kapton in LAr.
- Number of photoelectrons from 5 mm diameter target, equivalent to 25x0.005 m strip of Kapton.
- Thus, electron noise per wire due to Kapton seems to be much smaller than electron cloud from photoelectric target.
- Nevertheless, due to large area of Kapton material, this issue requires further study with simulations and quantum efficiency measurement.
- In case of Kapton being an issue, we will resort to bare fibers, illuminating corners of RPs.

Charge Question: Is the planned testing program for ProtoDUNE-II adequate to ensure that the system meets requirements and mitigates as much as possible identified risks to stable TPC operation?

✓ Glue targets in predetermined locations on the CPA – several targets sufficient to validate system

- \checkmark Use different target materials to compare their performance
- ✓ Verify the potential of targets to generate several 1000 electron clouds and their potential to diagnose electric field distortions and vertex reconstruction
- \checkmark Search for noise related to photoelectron targets in the ProtoDUNE-II data
- Search for noise related to running the PhEL in the ProtoDUNE-II data from Kapton and other sources
- ✓ Allocate port to insert laser fibers used for illumination
- ✓ Validate interface with track laser in order to inject 266 nm photons into fibers
- \checkmark Validate efficiency of laser light injection in the optical fiber
- \checkmark Validate light attenuation in fibers
- \checkmark Validate design interface with APA and optimized locations of fibers between top and bottom APAs
- ✓ Validate diffuser design and light losses in the diffuser as well as its ability to illuminate large areas of CPAs.
- \checkmark Validate bare fiber CPA illumination.

Conclusion

Dependence of the track laser well.

- PhEL is uniquely suited to provide a detector wake-up routine to quickly diagnose if the detector is alive, since the rate of cosmic rays is low underground.
- □PhEL is an effective diagnostic and calibration tool, that can quickly and accurately sample the electron drift velocity in the entire detector
- □PhEL can be used to identify electric field distortions due to space charge effects.
- Exact knowledge of the timing and position of the generated electron clouds is useful for vertex calibration.