Vectorizing and Parallelizing
the Gaus-Hit Finder

ML 8
< & []
)
A A
S P S C 1 DA
o

Z)
)

%)

& Scientific Discovery through
\\>"\ Advanced Computing
C

WBoONE _

Sophie Berkman
for the SciDAC HEP Reco Group
(G. Cerati, B. Gravelle, A. Hall, B. Norris, M. Wang)

LArSoft Meeting

June 18, 2019 # Fermilab

June 18, 2019 S. Berkman 1

SciDaC Project: HEP Event Reconstruction

e Study improvements to HEP
event reconstruction using
vectorization and modern
computing architectures

* Liquid Argon:
— Took O(100 s) to process a

LBooNE event (8,256 wires)
e MCCS8 rerconstruction
— Improvements necessary for a

larger scale experiment like DUNE
(384,000 wires/ 10 kTon cryostat)

— Focus on vectorizing and
parallelizing low level signal
processing and event
reconstruction

 CMS: vectorize and parallelize
tracking code

UNIVERSITY OF

OREGON

3& Fermilab ()

June 18, 2019 S. Berkman 2

Feasibility study: GausHitFinder

Feasibility study: GausHitFinder

— Charged particles produce pulses on wires. Identify and extract parameters
associated with pulses (position, amplitude, width).

— Wires are independent; can be processed independently
— ~15% of uBooNE work flow time (in MCC8)
Vectorization and parallelization developments were done within a stand-

alone version of the GausHitFinder developed by M. Wang, G. Cerati, B.
Norris

— Implements the Levenberg-Marquardt algorithm to do the fitting
— ROOT/ Minuit not suitable for parallelization - global memory management

— Stand-alone code is 8 times faster than the ROOT version even before
vectorization and parallelization.

— Will discuss results on stand-alone code, and then LArSoft integration
e All results are on single muon events simulated in uBooNE
e Stand alone code compiled with icc

= T. Usher
£ ' ' ' =
= % Example Wire Pulses =
T =
GJ —=
2 —=
S = N =
—1450 1500 1350 1600 1650
Time

June 18, 2019 S. Berkman 3

Vectorization of Stand-Alone GausHitFinder
e Vectorization challenges:

— Minimization difficult because fits converge
in different numbers of iterations

— Cannot fit multiple hits at the same time
— Vectorize the most time consuming loop,

Vectorization Speed-Up

but this is not all of the code g::;g:er :,ZI:::::Z;E::
* Vectorization Strategies: no-vec, no 1
— Compiler vectorization: use avx512 pragmas
— Explicit vectorization on the most time sse, pragmas 1.2
consuming loops: VX512, no 13
— Loops determined by profiling the code pragmas
— #pragma omp simd, #pragma ivdep avx512, 2.0
* Speed increases pragmas
— Explicit vectorization: ~65% faster on KNL,
~50% faster on Skylake

— Compiler and explicit vectorization: 2 times
faster on KNL than with no vectorization

June 18, 2019 S. Berkman 4

Vectorization Using Intel MKL

]] Work by B. Gravelle (U. Oregon)
Intel Math Kernel Libraries y it port
man
(IVIKL) m)_arquar IT Ferto ance

— State of the art vectorized math
library, so it is an important
point of comparison.

Do the fitting in a way that is

WE” VeCtOrIZEd Simulat—ed—R;aconstructed Hit Time
Implemented MKL as another MKL Fit Performance

fitting option within stand-
alone framework
Results:

— Physics performance consistent
with Marquardt fitter

— ~5 times slower than
Marquardt fitter.

Simulated-Reconstructed Hit Time

June 18, 2019 S. Berkman 5

Parallelization of Stand-Alone GausHitFinder

* Using OpenMP parallel for loop over
regions of interest (ROI) on the
wires

— Fastest with “dynamic” thread
scheduling

* Parallelization challenges:

— Algorithm has a relatively small
amount of work. Single muon events
have less less work to do than the
average neutrino event.

— Thread overhead may limit speed up
e Speed increases with

parallelization:

— KNL: 17 times faster

— Skylake: 12 times faster

* The speed improvements from

parallelization are not yet included
in LArSoft

SPEED-UP

AXIS TITLE

o N b~ OO

20
18
16
14
12

oN B O

14
12

KNL SPEED UP

o Static Dynamic 4 Guided Auto

20 40 60 80
NUMBER OF THREADS FOR ROI LOOP

SKYLAKE SPEED UP

@ Static Dynamic 4 Guided Auto

20 40 60 80
NUMBER OF THREADS FOR ROI LOOP

100

100

June 18, 2019 S. Berkman

Parallelizing over Events

» Additional speed increases by Work by G. Cerati
parallelizing over events as well
as regions of interest Speed Up Parallelizing over Events and ROIs
a.20r
— Additional OMP parallel for loop 3,
with dynamic scheduling @ 16 \
* Speed increases on skylake g _//' .
with additional parallelization: : / \
— ~9 times faster when parallelizing s~ s
only over region of interest 6§ e nen :
(Event threads fixed to 1) 4/ o NinEvent=4
— ~11 times faster when e

parallelizing only over events A TotaloNthEvent-NIRO!
(ROI threads fixed to 1)

— ~20 times faster when
parallelizing over both

June 18, 2019 S. Berkman 7

LArSoft Integration

Integrated a version of the stand-alone code with the
Marquardt fitter into LArSoft

— Branch of larreco: feature/sberkman_gshfmrqdt
Marquardt fitting is implemented as a class called MargFitAlg
— Does not depend on any external libraries

New tool “PeakFitterMrqdt_tool.cc” does the fit using the
same Marquardt fitter as implemented in the stand alone

code.

Can call this new tool instead of the default
“PeakFitterGaussian_tool.cc” in the GausHitFinder_module.cc

— Does the fitting in “findPeakParameters” function

None of the current functionality was changed in this branch,
just has the option to use the new fitter

Mike is also usmg this Levenberg-Marquardt fltter in LarSoft.

Overview Activity Wiki RG],

root / larreco / lly Statistics | Branch .| feature, Jsberkman _gshfmradt B
HitFinder /
HitFinderTools @ feature/sberkman_gshfmrqdt

June 18, 2019 S. Berkman

LArSOft Valldatlon Validation by G. Cerati

* Initial validation done on e [
uboonebuild01.fnal.gov, with Time |Time |Time

20 single muon events (s) () |(s)
° ResultS: ROOT 0.674 0.146 1.78

Marquardt 0.070 0.034 0.151

— Hit finder is 9.6 times faster on
average than the current LArSoft Speed 96 43 118

version. Increase
— Physics results are comparable. :
* Will look into ~25% of cases where 60 oo
results are different. - vt !
* Does not yet include all of the

vectorization and
parallelization improvements.

— No parallelization o
— Uses sse instead of avx512 I I RS

-10 -8 6 4 -2 0 2 4 6 8 10
HitTime,,, . -HitTime

30

201~

default

June 18, 2019 S. Berkman 9

Conclusions & Future Work

GausHitFinder has been vectorized and parallelized:
— Up to 20 times faster with parallelization
— Up to 2 times faster with vectorization

Levenberg-Marquardt algorithm has been implemented to do
the fitting in the GausHitFinder algorithm instead of ROOT

— Fitter implementation performs well when compared to MKL

New version of the GausHitFinder integrated into LArSoft:
— 9.6 times faster than the current implementation

— Results are reasonable, some additional validation may be needed
to understand any differences between new and current version.

— Not yet taking advantage of all of the potential vectorization and
parallelization improvements, which are further independent
speed-ups.

Future directions:

— GPUs: work has started on the CMS side of the SciDAC project and
plan to test similar techniques with liquid argon code.

— Plan to start working with other signal processing algorithms next.

