
June 18, 2019 S. Berkman 1

Vectorizing and Parallelizing
the Gaus-Hit Finder

Sophie Berkman
for the SciDAC HEP Reco Group

(G. Cerati, B. Gravelle, A. Hall, B. Norris, M. Wang)
LArSoft Meeting

June 18, 2019

SciDaC Project: HEP Event Reconstruction

June 18, 2019 S. Berkman 2

• Study improvements to HEP
event reconstruction using
vectorization and modern
computing architectures

• Liquid Argon:
– Took O(100 s) to process a

µBooNE event (8,256 wires)
• MCC8 rerconstruction

– Improvements necessary for a
larger scale experiment like DUNE
(384,000 wires/ 10 kTon cryostat)

– Focus on vectorizing and
parallelizing low level signal
processing and event
reconstruction

• CMS: vectorize and parallelize
tracking code

Feasibility study: GausHitFinder
• Feasibility study: GausHitFinder

– Charged particles produce pulses on wires. Identify and extract parameters
associated with pulses (position, amplitude, width).

– Wires are independent; can be processed independently
– ~15% of µBooNE work flow time (in MCC8)

• Vectorization and parallelization developments were done within a stand-
alone version of the GausHitFinder developed by M. Wang, G. Cerati, B.
Norris
– Implements the Levenberg-Marquardt algorithm to do the fitting
– ROOT/ Minuit not suitable for parallelization - global memory management
– Stand-alone code is 8 times faster than the ROOT version even before

vectorization and parallelization.
– Will discuss results on stand-alone code, and then LArSoft integration

• All results are on single muon events simulated in µBooNE
• Stand alone code compiled with icc

June 18, 2019 S. Berkman 3

T. Usher

Pu
lse

 H
ei

gh
t

Time

Example Wire Pulses

Vectorization of Stand-Alone GausHitFinder
• Vectorization challenges:
– Minimization difficult because fits converge

in different numbers of iterations
– Cannot fit multiple hits at the same time
– Vectorize the most time consuming loop,

but this is not all of the code
• Vectorization Strategies:
– Compiler vectorization: use avx512
– Explicit vectorization on the most time

consuming loops:
– Loops determined by profiling the code
– #pragma omp simd, #pragma ivdep

• Speed increases
– Explicit vectorization: ~65% faster on KNL,

~50% faster on Skylake
– Compiler and explicit vectorization: 2 times

faster on KNL than with no vectorization
June 18, 2019 S. Berkman 4

Vectorization
Compiler
Option

Speed-Up
relative to no
vectorization

no-vec, no
pragmas

1

sse, pragmas 1.2

avx512, no
pragmas

1.3

avx512,
pragmas

2.0

Vectorization Using Intel MKL
• Intel Math Kernel Libraries

(MKL)
– State of the art vectorized math

library, so it is an important
point of comparison.

• Do the fitting in a way that is
well vectorized

• Implemented MKL as another
fitting option within stand-
alone framework

• Results:
– Physics performance consistent

with Marquardt fitter
– ~5 times slower than

Marquardt fitter.
June 18, 2019 S. Berkman 5

Work by B. Gravelle (U. Oregon)

Simulated-Reconstructed Hit Time

Simulated-Reconstructed Hit Time

Marquardt Fit Performance

MKL Fit Performance

Parallelization of Stand-Alone GausHitFinder
• Using OpenMP parallel for loop over

regions of interest (ROI) on the
wires
– Fastest with “dynamic” thread

scheduling
• Parallelization challenges:

– Algorithm has a relatively small
amount of work. Single muon events
have less less work to do than the
average neutrino event.

– Thread overhead may limit speed up
• Speed increases with

parallelization:
– KNL: 17 times faster
– Skylake: 12 times faster

• The speed improvements from
parallelization are not yet included
in LArSoft

June 18, 2019 S. Berkman 6

0
2
4
6
8

10
12
14
16
18
20

0 20 40 60 80 100

SP
EE

D-
UP

NUMBER OF THREADS FOR ROI LOOP

KNL SPEED UP
Static Dynamic Guided Auto

0

2

4

6

8

10

12

14

0 20 40 60 80 100

AX
IS

 T
IT

LE

NUMBER OF THREADS FOR ROI LOOP

SKYLAKE SPEED UP
Static Dynamic Guided Auto

Parallelizing over Events
• Additional speed increases by

parallelizing over events as well
as regions of interest
– Additional OMP parallel for loop

with dynamic scheduling
• Speed increases on skylake

with additional parallelization:
– ~9 times faster when parallelizing

only over region of interest
(Event threads fixed to 1)

– ~11 times faster when
parallelizing only over events
(ROI threads fixed to 1)

– ~20 times faster when
parallelizing over both

June 18, 2019 S. Berkman 7

Work by G. Cerati

Speed Up Parallelizing over Events and ROIs

LArSoft Integration
• Integrated a version of the stand-alone code with the

Marquardt fitter into LArSoft
– Branch of larreco: feature/sberkman_gshfmrqdt

• Marquardt fitting is implemented as a class called MarqFitAlg
– Does not depend on any external libraries

• New tool “PeakFitterMrqdt_tool.cc” does the fit using the
same Marquardt fitter as implemented in the stand alone
code.

• Can call this new tool instead of the default
“PeakFitterGaussian_tool.cc” in the GausHitFinder_module.cc
– Does the fitting in “findPeakParameters” function

• None of the current functionality was changed in this branch,
just has the option to use the new fitter

• Mike is also using this Levenberg-Marquardt fitter in LarSoft.

June 18, 2019 S. Berkman 8

LArSoft Validation
• Initial validation done on

uboonebuild01.fnal.gov, with
20 single muon events

• Results:
– Hit finder is 9.6 times faster on

average than the current LArSoft
version.

– Physics results are comparable.
• Will look into ~25% of cases where

results are different.

• Does not yet include all of the
vectorization and
parallelization improvements.
– No parallelization
– Uses sse instead of avx512

June 18, 2019 S. Berkman 9

Validation by G. Cerati

Fitter Avg
Time
(s)

Min
Time
(s)

Max
Time
(s)

ROOT 0.674 0.146 1.78

Marquardt 0.070 0.034 0.151

Speed
Increase

9.6 4.3 11.8

Conclusions & Future Work
• GausHitFinder has been vectorized and parallelized:
– Up to 20 times faster with parallelization
– Up to 2 times faster with vectorization

• Levenberg-Marquardt algorithm has been implemented to do
the fitting in the GausHitFinder algorithm instead of ROOT
– Fitter implementation performs well when compared to MKL

• New version of the GausHitFinder integrated into LArSoft:
– 9.6 times faster than the current implementation
– Results are reasonable, some additional validation may be needed

to understand any differences between new and current version.
– Not yet taking advantage of all of the potential vectorization and

parallelization improvements, which are further independent
speed-ups.

• Future directions:
– GPUs: work has started on the CMS side of the SciDAC project and

plan to test similar techniques with liquid argon code.
– Plan to start working with other signal processing algorithms next.
June 18, 2019 S. Berkman 10

