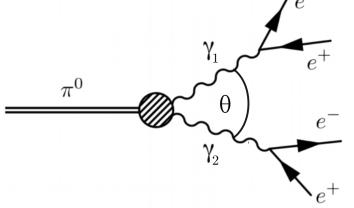
$u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS



π^0 studies with ArgonCube 2x2 in NuMI

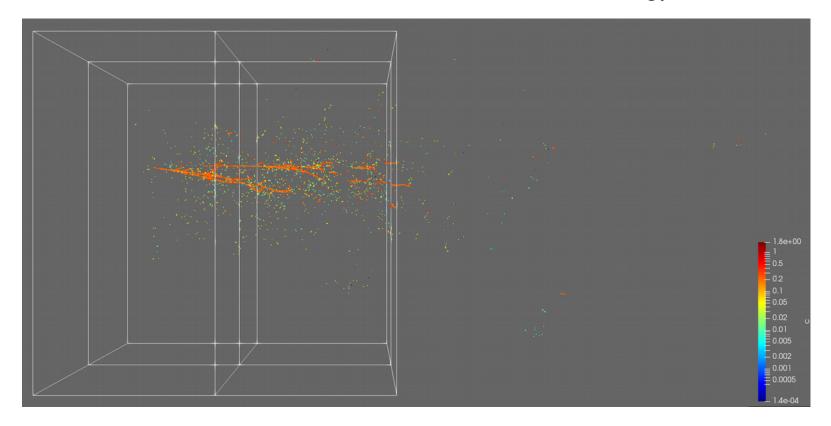
Roman Berner | roman.berner@lhep.unibe.ch ArgonCube Fortnightly Call, June 20th 2019

Motivation

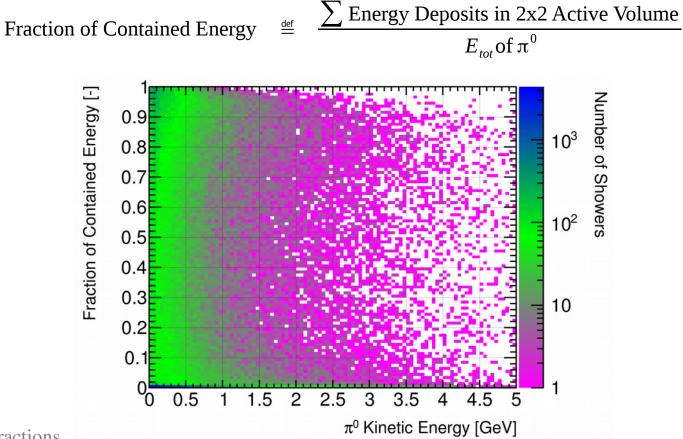
Calibrating electron energy scale using $\pi^0 \rightarrow \gamma + \gamma$ events (which are contained in 2x2)

Total π^0 energy goes into showers (back-to-back γ 's in CM frame) \rightarrow Angle between γ 's allows for π^0 kinetic energy reconstruction:

$$|\vec{p}_{\pi^{0}}| = m_{\pi^{0}} \cdot \sqrt{\frac{2}{((1-\alpha^{2}) \cdot (1-\cos(\theta)))}} \qquad \alpha = \frac{|E_{\gamma_{1}} - E_{\gamma_{2}}|}{E_{\gamma_{1}} + E_{\gamma_{2}}}$$


Simulation Tools

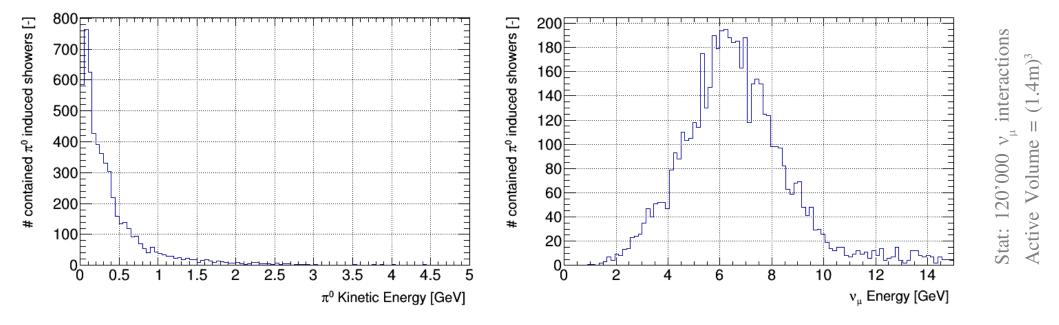
C. Marshall provided ROOT files with simulated v_{μ} interactions in argon (used D. Dwyer's argonbox) \rightarrow From this files: Produced π^0 trees with relevant informations



Contained π^0 induced Shower

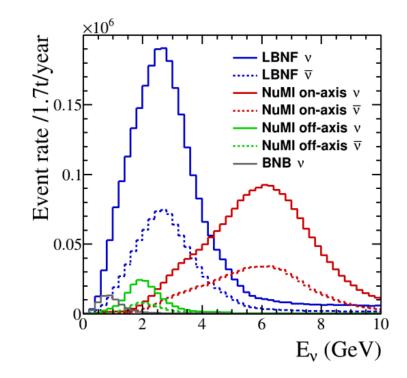
Contained: If Shower's fraction of contained energy > 0.9

Energy Containment of π^0


Stat: 120'000 v_{μ} interactions

Active Volume = $(1.4m)^3 \rightarrow$ No fiducialisation applied

June 20th, 2019 ArgonCube Fortnightly Call


Energy Spectra of Contained Showers

Contained: If Shower's fraction of contained energy > 0.9

Next: Expected rate of contained " π^0 -showers" for 2x2 in NuMI

Event Rates in NuMI ND Hall

→ Determine expected event rate of π^0 induced showers which are contained in 2x2

- D. Goeldi: π^0 pile-up study for the DUNE ND:
- His approach: Using 3D space, Cylinder + Cone around EM showers
- → Will use this code to reconstruct angle between γ's and deposited energy for each shower

Machine Learning (working together with Kazu):

 \rightarrow In order to find π^0 induced showers in data

Backup

Fraction of contained energy

def

=

 \geq

$$\frac{\text{total energy in } 2\text{x2}}{\text{total energy of } \pi^0}$$

$$\frac{\sum \text{Energy Deposits in } 2\text{x2} + \sum E_{tot} \text{ of particles remaining after shower}}{E_{tot} \text{ of } \pi^0}$$

$$\frac{\sum \text{Energy Deposits in } 2\text{x2}}{E_{tot} \text{ of } \pi^0}$$

Lower limit for the energy containment Note: Detector efficiency not taken into account