Plan for the ProtoDUNE performance paper

Tingjun Yang
ProtoDUNE DRA Meeting
Jun 19, 2019

PUBLICATION PLAN

Two separate "companion papers" (i.e. two consecutive articles on the same journal Issue):

- 1st Article on Detector Design, Construction and basic Performance from Commissioning and Operation (ie the protoDUNE-SP "Technical Paper")
- 2nd Article on more advanced Performance from off-line data reconstruction and analysis of LArTPC on the test beam (ie the first "Performance of protoDUNE-SP detector..." paper)
 - From Flavio's talk at the last collaboration meeting.
 - Gina Rameika will be the editor of the "Technical Paper".
 - I will be the editor of the "Performance Paper".
 - This talk discusses the plan for the "Performance Paper".

Strategy of the performance paper

- The performance paper will have a brief description of detector, beamline and data taking. The details will be in the technical paper.
- The performance paper will focus on the detector performance characterization aspects of both TPC and photon detectors.
- For each topic, we will identify one or a few persons to coordinate the effort and write the corresponding section.
 - Many people have agreed to contribute to the paper.
 - More discussions are needed for the detector summary and photon detector sections.
- People should start writing the details of the analysis methods and results using MCC11 data/MC samples while we continue to validate MCC12. The final results will be based on the MCC12 production.

First results on ProtoDUNE-SP LArTPC performance from a test beam run at the CERN Neutrino Platform

			•	
1	Introduction	2	6.1 Imaging: beam event display gallery (2D and 3D)	3
	Introduction	-	6.2 Evidence of Space charge from Ions in the drift volume [Mike Mooney]	3
2	The ProtoDUNE detector: brief overview	2	6.2.1 E-field distortion and correction	3
	2.1 TPC and Cold Electronics read-out system	3	6.2.2 Ion Fluid flow dynamics	3
	2.2 Photon Detection System	3	6.3 Correction for signal loss due to impurities in the drift volume	3
	2.3 CryoInstrumentation	3	6.4 Charge signal Calibration: dQ/dx -> dE/dx from cosmic stopping muons [Ajib Paudel]	3
	2.3.1 Purity Monitors [Jianming Bian]	3	6.5 Track Calorimetric Energy reconstruction and Identification	3
3	Data taking 3.1 The H4 VLE dedicated charged particle beam line [Alex Booth, Jake Calcutt]	3 3	6.5.1 dE/dx vs range for 1 GeV/c beam protons [Heng-Ye Liao]6.5.2 dE/dx vs range for 1 GeV/c beam pions and muons [Owen Goodwin]	3 63
	3.2 Beam Trigger and DAQ	³ 7	PhDet Response	3
4	TPC characterization	3	7.1 Single PE rate	2
	4.1 Noise level from CE [David Adams]	3	7.2 Light signal Calibration	4
	4.2 Test pulse calibration [David Adams]	3	7.2.1 Detector Light Yield (PE/MeV) from 7 GeV/c beam electrons	4
	4.3 Event reconstruction	3	7.2.2 Low energy signals (Michel electrons)	2
	4.3.1 Noise filtration and signal deconvolution [Wenqiang Gu]	3		
	4.3.2 Pattern recognition [Steve Green]	3 8	Conclusions	4
	4.3.3 Signal to noise performance [Heng-Ye Liao]	3		
5	PhDet characterization	3		

6 TPC Response

5.1 Single PE calibration

Contents

Milestones

- We will identify people for the remaining sections (recommendations and volunteers are welcome).
- We aim to have the first draft on July 18 using MCC11 results.
- We aim to have the second draft on Aug 18 using MCC12 results.
- If Flavio, George and myself are satisfied with the second draft, we will start the review process as documented in DUNE-doc-1115:
 - WG review
 - ARC (Analysis Review Committee) review
 - Collaboration review

Design, construction and operation of the ProtoDUNE-SP **Liquid Argon TPC**

Contents

Introduction

Detector component

- Inner Detector: TPC
 - Cathode Plane Assembly (CPA)
 - 2.1.2 Field Cage (FC)
 - 2.1.3 Beam Plug (BP)
 - High-voltage (HV) system and Ground Planes (GP) 2.1.4
 - Anode Plane Assemblies (APA) 2.1.5
 - TPC Front-end cold electronics (CE)
- Inner Detector: Photon Detection System (PDS)
 - PhotoCollectors: ARAPUCA Cells, Dip-Coated Bars, Double-shift Bars
 - 2.2.2 PhotoSensors: SiPM and MPPC
 - 2.2.3 PDS read-out electronics
- CryoInstrumentation
 - 2.3.1 Purity Monitor
 - T probes and Vertical T-profiler

3 Detector Assembly

- The Neutrino Platform facility at CERN
- Membrane Cryostat and FeedThroughs
- Cryogenics, Cooling and Purification System
- 3.4 ColdBox tests
- Ship-in-a-Bottle Assembly
- Detector Grounding and shielding

External Trigger detectors

- H4-VLE Beam Line, Beam Instrumentation (BI) and Beam Trigger
- Muon Tagger (CRT) and Cosmic Trigger

5 Detector Commissioning and data taking

- Detector Control System (DCS)
- Cooling and LAr Filling
- Data Acquisition System (DAQ)
- Data Quality Monitor (DOM)
- Data processing and Computing
- Working conditions and detector stability
- HV stability

6 LAr characterization

- LAr Purity level (from PurMon) and e-Lifetime monitoring
- LAr T gradient (from T vertical probes)

TPC characterization

- Non-responsive wires/channels
- TPC/CE Noise level, Noise sources, Noise Filtering
- Cold ADC issues (sticky code) and mitigation
- Test Pulse calibration: Channel-to-channel variation (gain) and stability
- Signal shape and signal deconvolution
- Hit reconstruction
- Imaging: event display gallery (2D and 3D)

PDS characterization

- Non-responsive sensors/channels
- Test pulse (flasher): Single PE calibration and stability
- PhDetector(s) Efficiency (PE/Ph)

Conclusions

DUNE Collaboration Meeting:

ProtoDUNE-SP Plans for first publications

