The Impact of Theoretical Errors in the SMEFT

William Shepherd In Search of New Physics Using SMEFT Argonne, October 2, 2019

Why should we care about uncertainties in signals?

- Neglecting or downplaying signal-function theory errors is very common in the pheno community
 - Idea being that you can clean up the calculations once we find something, but signatures won't change drastically
- Neglecting errors is never correct in precision measurements or calculations, though, and that's the business we're in

A Quote from a Model Builder

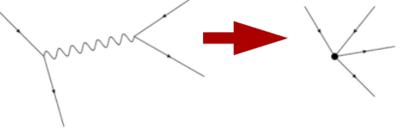
"Whatever bound you get from your EFT, I can always write down a model that passes the test against data and violates the bound you claim to have." – Bhaskar Dutta

Based on...

- 1711.07484, 1812.07575 with Stefan Alte and Matthias König
- 1907.13160 with Eduard Keilmann

Introduction: EFT

- The canonical example of an EFT is Fermi's theory of weak decay A real limit of the SM
- We still use this today!



- Captures physics in a particular energy regime – Count in powers of E/Mw
- Ability to systematically improve theory predictions is the key virtue of EFTs

Warsaw Basis

$1:X^3$		$2:H^6$		$3: H^4 D^2$				$5:\psi^2H^3+{ m h.c.}$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$Q_H (H^{\dagger}H)^3$		$Q_{H\Box}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$		Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$(H^{\dagger}D_{\mu})$	H) [*] (H	$H^{\dagger}D_{\mu}H$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$							Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$
$Q_{\widetilde{W}}$	$\epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$								
$4: X^{2}H^{2}$		$6:\psi^2 XH + h.c.$			$7:\psi$		$\psi^2 H^2 H^2 H^2$	D	
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$		$I_{\mu\nu}$	Q	$_{Hl}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu})$	$(e_r)HB_{\mu\nu}$,	Q	$_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}$	$(\bar{l}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T$	$(A_r)\widetilde{H}$	$\gamma_{\mu\nu}^{A}$	Q	He	$(H^{\dagger}i\overleftarrow{D}$	$\partial_{\mu}H)(\bar{e}_p\gamma^{\mu}e_r)$
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} v$	$(u_r) \tau^I \widetilde{H} W$	${}^{TI}_{\mu u}$	Q	$\stackrel{(1)}{Hq}$	$(H^{\dagger}i\overleftarrow{L})$	$(\bar{q}_p \gamma^\mu q_r)$
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu}$	$(u_r)\widetilde{H} B_\mu$	ν	Q	(3) Hq	$(H^{\dagger}i\overleftrightarrow{D})$	${}^{I}_{\mu}H)(\bar{q}_{p} au^{I}\gamma^{\mu}q_{r})$
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T)$	$(r^A d_r) H G$	$^{A}_{\mu u}$	Q	Hu	$(H^{\dagger}i\overleftarrow{D}$	$\partial_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$
Q_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu u} d$	$l_r)\tau^I H W$	$^{TI}_{\mu u}$	Q	Hd	$(H^{\dagger}i\overleftarrow{D}$	$\partial_{\mu}H)(\bar{d}_p\gamma^{\mu}d_r)$
$Q_{H\widetilde{W}B}$	$H^\dagger \tau^I H \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu})$	$(d_r)H B_\mu$	ν	Q_{Hud}	+ h.c.	$i(\widetilde{H}^{\dagger}D)$	$(\bar{u}_p \gamma^\mu d_r)$

Warsaw Basis: 4-fermion

	$8:(\bar{L}L)(\bar{L}L)$	
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu}
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}
		$Q_{ud}^{(1)}$
		(-)

_

	$8:(\bar{R}R)(\bar{R}R)$
Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$
Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$
Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$
Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$
Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$

	8 : (LL)(RR)
Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$
Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$

 $8 \cdot (\bar{L}L)(\bar{R}R)$

$8:(\bar{L}I)$	$R(\bar{R}L) + h.c.$	$8: (\bar{L}R)(\bar{L}R) + h.c.$		
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_{tj})$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r)\epsilon_{jk}(\bar{q}_s^k d_t)$	
		$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon_{jk} (\bar{q}_s^k T^A d_t)$	
		$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \epsilon_{jk} (\bar{q}_s^k u_t)$	
		$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	

How to build a collider search

- Canonical search design boils down to plugging a new physics model into Monte Carlo tools and constraining what comes out
 - Many nice tools exist for this purpose now, e.g.
 SMEFTsim
- Greatest challenge to such a search is the concern about EFT consistency; this description breaks down when the new particles are light enough
 - Ensuring EFT internal consistency is the best modelindependent way of addressing this concern

Ideal EFT Search

- Ideally, we want to be able to treat the theory errors as measurable nuisance parameters
 - Often possible for systematics, occasionally used for e.g. normalizations of EW corrections
- Since we aren't calculating the full dim-8 effect anytime soon, we must rely on the EFT structure to do this
- Power series in inverse cutoff scale is the only robust prediction of the EFT

Ideal EFT Search

• The best way to utilize this feature is to fit the data in event energy scale

•
$$\sigma = \sigma_{SM} (1 + \sum_{1}^{\infty} c_n \frac{\hat{s}^{2n}}{\Lambda^{2n}})$$

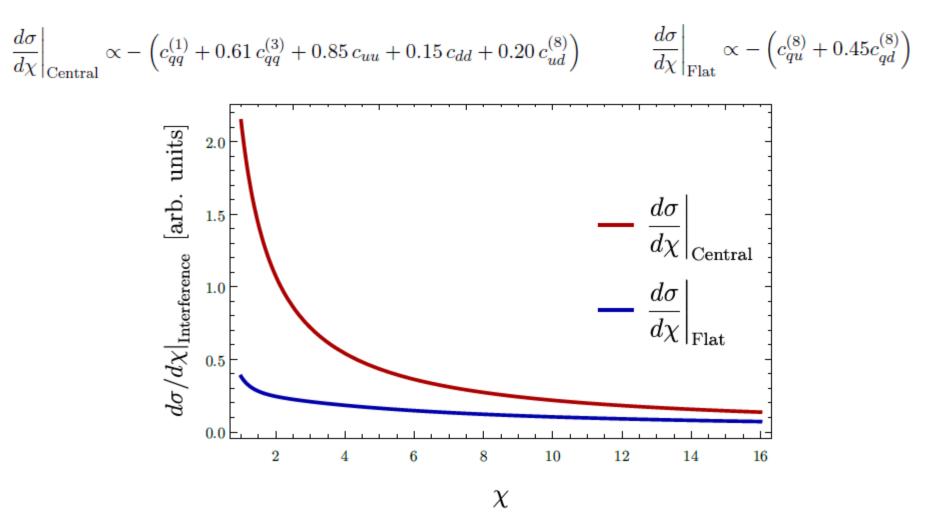
- 'Signal' is linear term, predicted in terms of dim-6 operator Wilson coefficients
- Theory error now probed by sensitivity to series truncation

Real-World Problems

•
$$\sigma \neq \sigma_{SM} (1 + \sum_{1}^{\infty} c_n \frac{\hat{s}^{2n}}{\Lambda^{2n}})$$

- Different PDF contributions to different order contributions to cross section
- Indicates that errors cannot be fit away cleanly for unknown higher-order effects
- A combination of signal shape fitting with error estimation is the best we can do
- I'll focus here on dijet and dilepton signals

Dijets from EFT



07/17/2019

William Shepherd, SHSU

Quark Compositeness

- Searches originally proposed by Eichten, Lane, and Peskin in 1983, they posit some contact interaction between quarks
- This is not an EFT treatment, nor is it meant to be; it's a specific UV model
- To do a proper EFT expansion requires care
 - Consider the errors arising from unknown (or neglected) operators
 - Investigate the effects of all operators at a given power-counting order on the given observable

Compositeness Search Signal

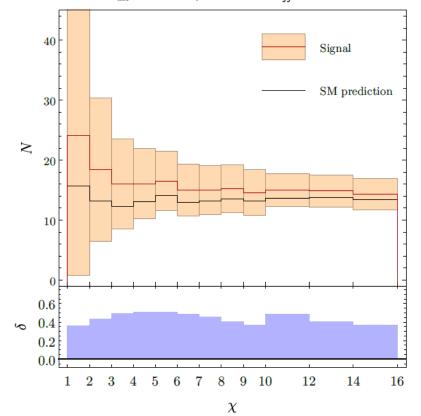
- The quark compositeness search has kept all terms naively predicted by the dimension 6 operator $Q_{qq}^{(1)}$, including squared term
- This is strongly centrally peaked, as the interference is central and the squared term even more so
- Thus, a search in angular variables is a natural technique to distinguish it from the SM

EFT error treatment

- The consistent EFT treatment is to expand the observable in a power series
 - Cross section, not amplitude
- Must include the full set of contributing operators at dim-6
 - Surprisingly, only two independent angular distributions contribute strongly
 - Remaining small differences arise from PDF evolution
- As we only have the full dim-6 contribution, everything else ought to be discarded
- The dim-6 squared piece is a proxy for the size of the unknown total dim-8 contribution
 - Note that additional operators needn't give correlated angular distribution

Search in Un-Normalized Distributions

- There can be large systematic differences between signal and background if we don't discard total crosssection information
- These analyses are bounded by EFT error at low χ, but statistics are important elsewhere



 $L_{\rm int} = 2.6 \text{ fb}^{-1}, \ 4.2 \text{ TeV} < m_{jj} < 4.8 \text{ TeV}$

Search in Un-Normalized Distributions

- There can be large systematic differences between signal and background if we don't discard total crosssection information
- These analyses are bounded by EFT error at low χ, but statistics are important elsewhere

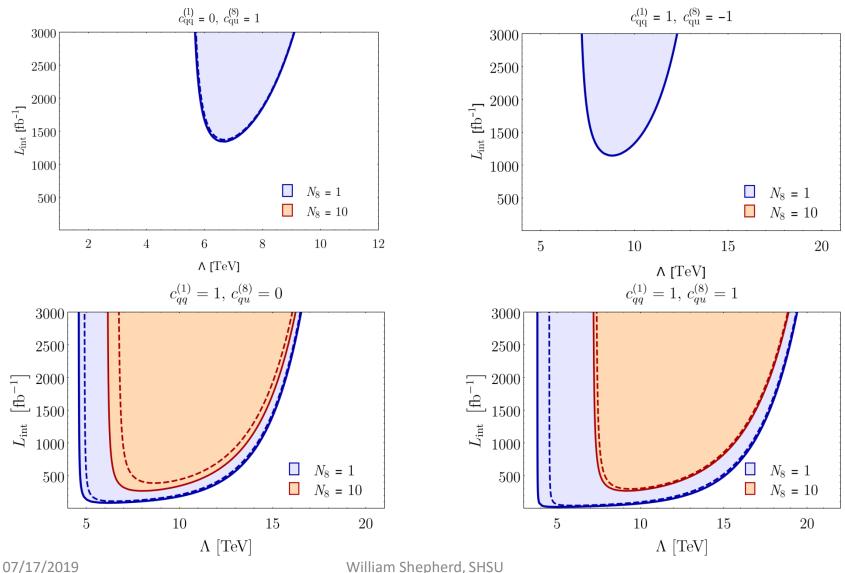
800 600 ح ₄₀₀ 200 $\begin{array}{c}
 0 \\
 1.5
 \end{array}$ 1.08 0.52 3 $\mathbf{5}$ 6 7 8 9 10 1214 16 1 4 χ

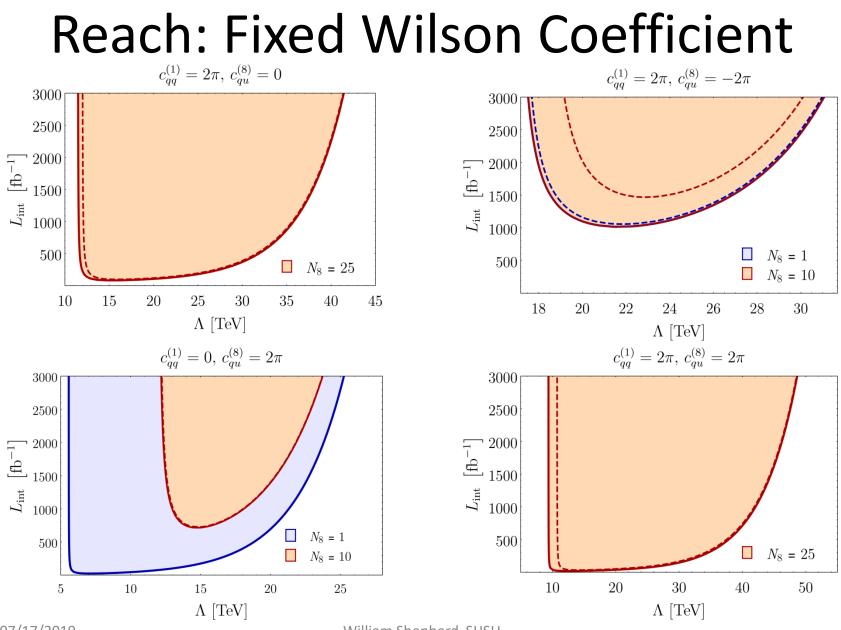
 $L_{\rm int} = 50 \text{ fb}^{-1}, \ 4.2 \text{ TeV} < m_{jj} < 4.8 \text{ TeV}$

Interpretation of EFT Bounds

- EFT signal size is only sensitive to the combination c_i/Λ^2 , cannot distinguish the two Broken weakly by RG effects
- This leaves us two ways to interpret the bounds coming from any EFT search
 - If we fix the new physics scale, searches bound
 Wilson coefficients
 - Fixed coefficients lead to bounds on mass scale

Reach: Fixed Wilson Coefficient



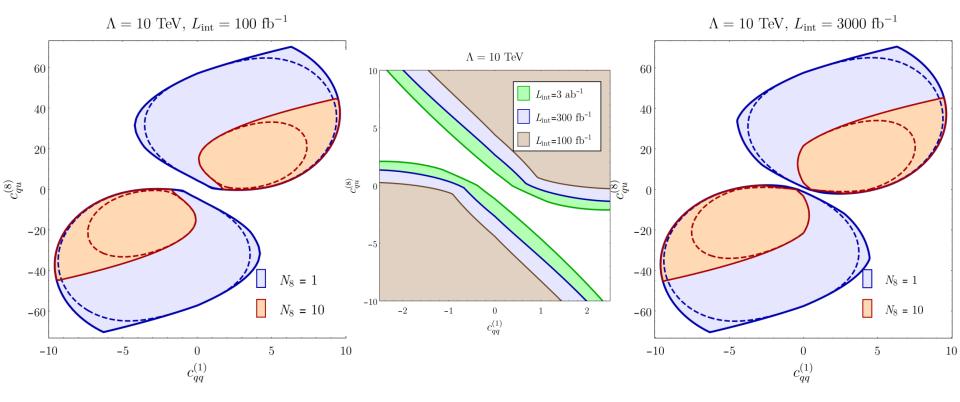


07/17/2019

William Shepherd, SHSU

Reach: Fixed NP Scale

• For large N8, only a narrow angle in coupling space can be constrained



William Shepherd, SHSU

Dileptons from SMEFT

- Additional effects arise in dilepton production compared to dijets
 - Z couplings can be reefined by SMEFT operator contributions
- In this process, however, only fourfermion operators give amplitudes growing with energy

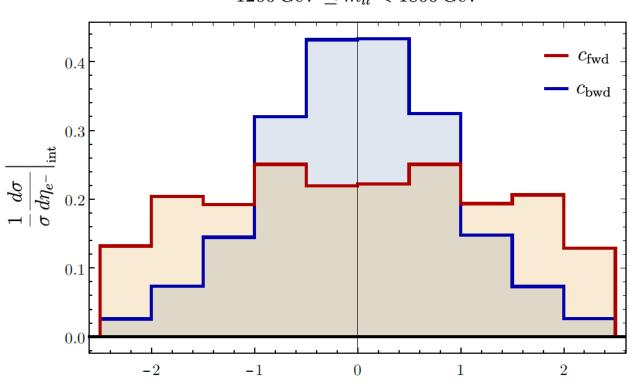
 $\begin{array}{c|c} Q_{lq}^{(1)} & \left(\bar{l}_p \gamma_\mu l_p\right) \left(\bar{q}_s \gamma^\mu q_s\right) \\ Q_{lq}^{(3)} & \left(\bar{l}_p \gamma_\mu \tau^I l_p\right) \left(\bar{q}_s \gamma^\mu \tau^I q_s\right) \\ Q_{eu} & \left(\bar{e}_p \gamma_\mu e_p\right) \left(\bar{u}_s \gamma^\mu u_s\right) \\ Q_{ed} & \left(\bar{e}_p \gamma_\mu e_p\right) \left(\bar{d}_s \gamma^\mu d_s\right) \end{array}$

Q_{lu}	$\left(\bar{l}_p\gamma_{\mu}l_p\right)\left(\bar{u}_s\gamma^{\mu}u_s\right)$
Q_{ld}	$\left(\bar{l}_p\gamma_{\mu}l_p\right)\left(\bar{d}_s\gamma^{\mu}d_s\right)$
Q_{qe}	$\left(\bar{q}_p\gamma_\mu q_p\right)\left(\bar{e}_s\gamma^\mu e_s\right)$

Forward/Backward production

 $c_{\text{fwd}} = C_{lq}^{(3)} - 0.48 C_{eu} - 0.33 C_{lq}^{(1)} + 0.15 C_{ed}$

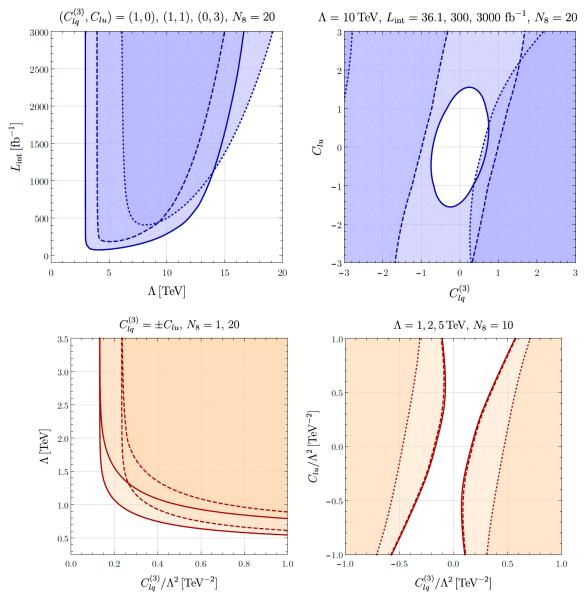
 $c_{\rm bwd} = C_{lu} + 0.81 \, C_{qe} - 0.33 \, C_{ld}$

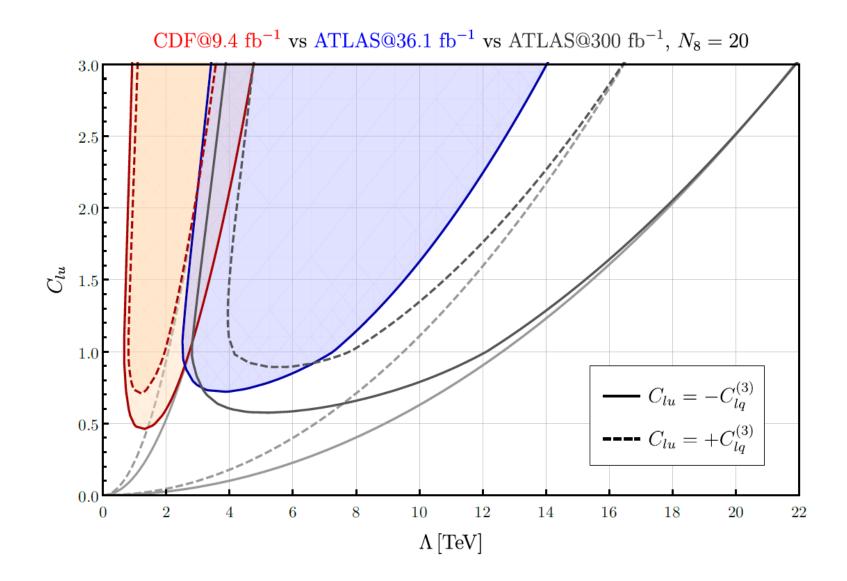


 $1200 \,\mathrm{GeV} \le m_{ll} < 1800 \,\mathrm{GeV}$

 η_{e^-}

LHC and Tevatron Sensitivity

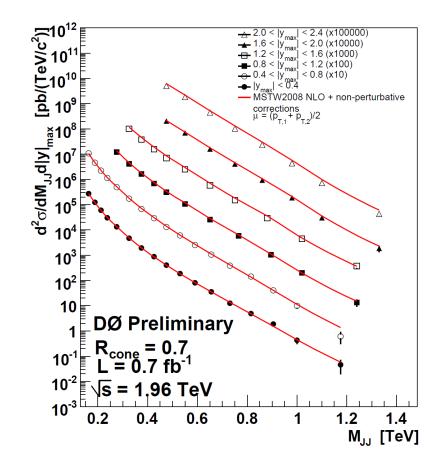




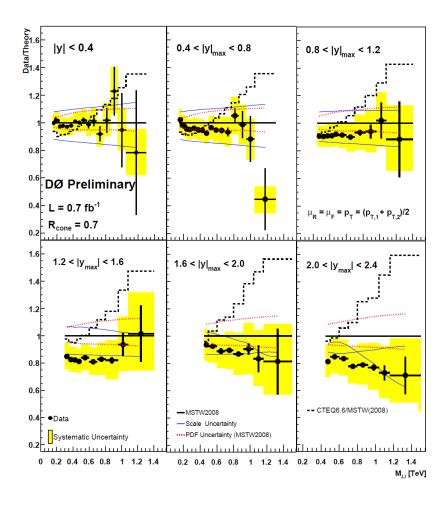
Low Lambda Dijets

- Can Tevatron data fill in the low-lambda region from the dijet study earlier?
 - Recall, dijet bounds lost sensitivity below 5 TeV or even higher
- Luckily, dijet cross section was measured at Tevatron as well

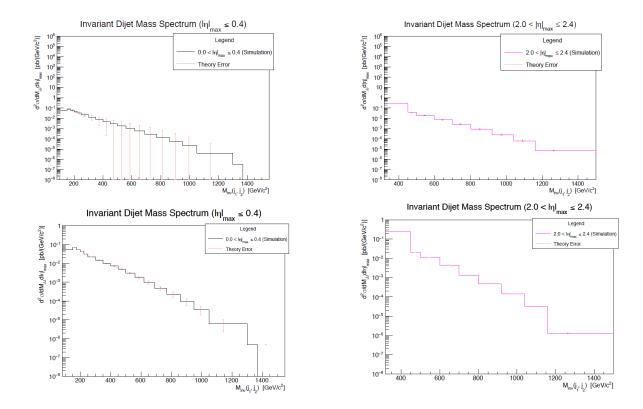
Tevatron Dijet Cross Section



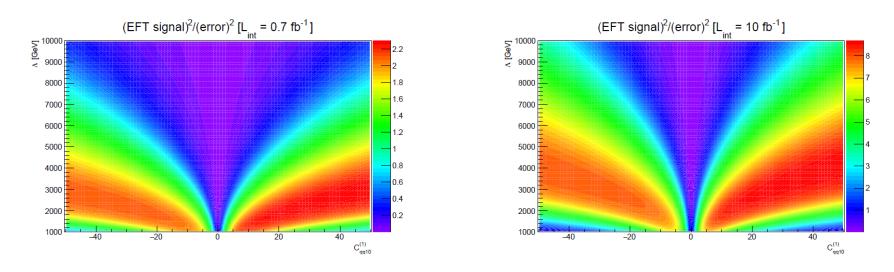
Tevatron Dijet Cross Section



SMEFT Dijets at Tevatron



Full-spectrum fits to Tevatron



- Fits to Tevatron data for the reported and full experimental luminosity
 - Note that this is fit over a large number of bins (71), so these test statistic values are not significant
 - Also, the full lumi fit assumes that systematics scale like statistics, which is aggressive

Optimized cut-and-count Tevatron

0.5

0.4

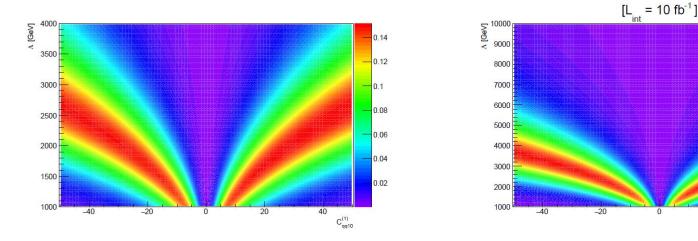
0.3

0.2

0.1

40

20



- Cutting out optimal region isn't much better
- Single-bin analysis with best sensitivity shown above, note we never reach 1sigma here

Tevatron can't constrain SMEFT dijets

- The dataset is simply too small for such a messy final state
 - An excellent argument for the high-lumi phase of the LHC
- This isn't necessarily disastrous; new interactions of colored particles at few TeV (we hope) would be directly probed as resonances at the LHC

Conclusions

- We have excellent data available, and must have enough respect for that to understand our new physics predictions at comparable precision
- In the most model-independent formulation of heavy new physics, the SMEFT parameter space is underconstrained by low energy data
- A truly global analysis will be needed to properly constrain the EFT without UV assumptions
 - Developing more observables that can be consistently constrained is an important future path for this field
 - Dijets and dileptons are a first step toward this global analysis goal; other directions ongoing, but much still to do

The Take-Away

- Setting shifts in EW observables to zero for the purposes of further searches does not give model-independent results
- Neglecting theory errors gets our analyses ignored by model-builders, who should be our biggest customers, so definitely stop doing that!
 - Produce results that they can't evade by utilizing an honest error estimate
 - 'New and improved' sales pitch needed to bring them back
 - Push back against any claim that a model can always be built to evade our EFT results

We need to make Bhaskar wrong about this!

"Whatever bound you get from your EFT, I can always write down a model that passes the test against data and violates the bound you claim to have." – Bhaskar Dutta

Thank You!

Backup: Flavor Matching

MFV and the SMEFT

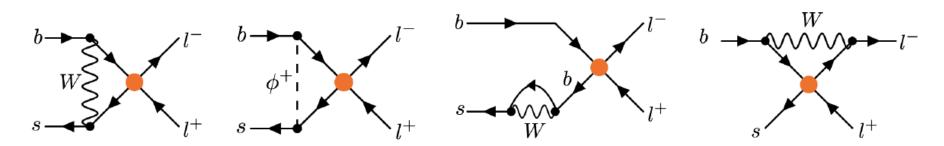
- We can insist that all flavor violation is given by powers of Yukawa matrices
 - Allowing arbitrary powers returns back to the full flavor-violation basis, with an approximate U(2)²
- Allowing no CP or flavor violation leaves only 16+20 parameters, linear flavor violation permits an additional 11 operators
- SM loops still generate obligatory FV effects which involve these new physics interactions

Matching SMEFT to WET

- Given loop-origin of FV in this ansatz, focus on down-type neutral transitions
 - Grants access to large top-Yukawa effects
 - SM process also at loop level
- WET operators of interest are dipoles and 4fermi interactions
 - Standard basis for b-physics labels these as O1-10
 - For cleaner observables involving photons or leptons, O7-10 are most relevant

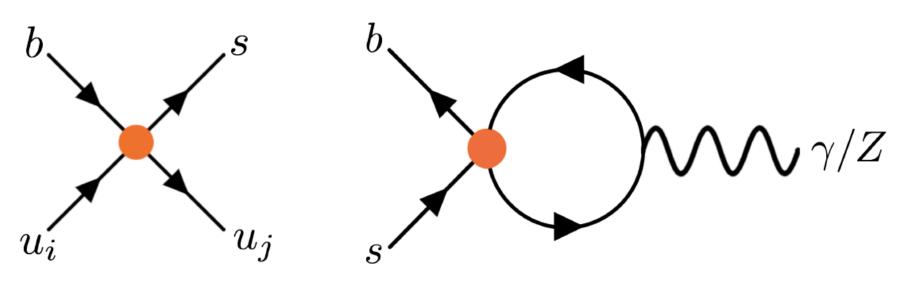
4-fermi operators

- Most 4-fermion operators that contribute are mixed quark-lepton operators
- SM charged-current loop then gives access to flavor changing effects
 - Non-top effects cancel mass-independent terms by GIM



4-fermi operators – tree level FCNCs

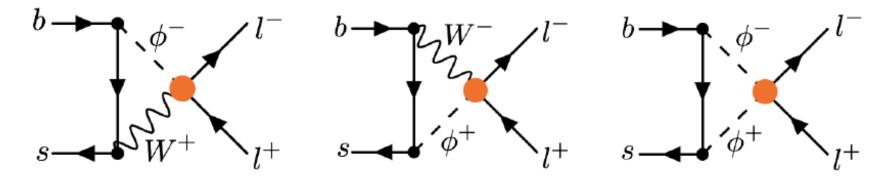
- 4-doublet operators can yield tree-level flavor changes due to CKM effects
- These will run into observable operators either with explicit matching or WET running



William Shepherd, SHSU

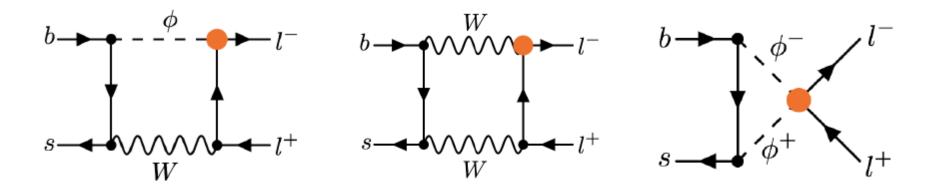
Higgs-leptonic current operators

- Correct Z coupling to leptons
 Tree-level effect in Z-pole data
- Also give new graphs
 - Necessary to achieve gauge invariant final answer



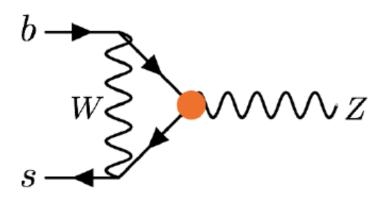
Higgs-leptonic current operators

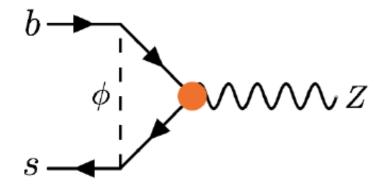
- Triplet operators give corrections to W and Z couplings to leptons
- Again also generate new diagrams important for gauge invariance



Higgs-quark current operators

- Correct couplings of Z to quarks
 Triplet operator also corrects coupling of W
- Yield new bubble-type graphs with 4-point interaction





Input parameter effects

- Importantly, input parameter shifts also play a role in this process
- Gives sensitivity to e.g. four-lepton operator
- Unavoidable consequence of QFT
 - Lagrangian parameters are not observables
 - Must calculate all observables in same theory
- These contributions have been neglected in the flavor literature thus far

Flavor Conclusions

- In the flavor sector we will have access to about 8 new constraints in the SMEFT parameter space from B, K decays and mixings
- A phenomenological analysis of these constraints (and how they play together with Precision EW) is underway – stay tuned.