

Report on the NOvA Experiment

Peter Shanahan Fermilab PAC 19 July 2019

In partnership with:

NOvA and the Physics of Long Baseline Neutrino Oscillations

- Many of the most compelling questions related to the P5 Science Driver Investigation of the Physics of Neutrino Mass are accessible in long-baseline oscillation measurements
 - Neutrino Mass Hierarchy?
 - What is the Pattern of Mixings?
 - Do Neutrinos Violate CP Symmetry?
 - Is there more to the story than a 3x3 PMNS Mixing Matrix?
- NOvA addresses these using
 - Two detectors separated by 810 km
 - High-purity $\nu_{\mu} \text{ and } \overline{\nu}_{\mu} \text{ beams}$
 - ν_{μ} disappearance, ν_{e} appearance, and flavor-independent (NC) disappearance
- Rich Menu of Cross-section Measurements in 1-3 GeV range for v and \bar{v}
- Other topics
 - Exotic phenomena (monopoles), Gravitational wave multimessenger searches, Supernova neutrinos, Dark Matter, Cosmic-ray Physics

🛠 Fermilab

NOvA Collaboration

- 200 Collaborators from 48 institutions in 7 countries.
- 24 Remote Operations Centers worldwide.

Illustrative Far Detector Neutrino Candidates

 $E_{\nu}=E_{\mu}(length) + E_{had}(calor.)$

NC, 2.8 GeV visible

Evisible

Data-Taking

Far Detector Beam Exposure To Date: Protons-on-target (POT) to NuMI

- 11.1x10²⁰ (14 kt-equivalent) POT Forward Horn Current (neutrino beam)
- 12.7x10²⁰ POT in Reverse Horn Current (antineutrino beam)

FY19: Far Detector recorded data for 99.1% of 5.56x10²⁰ POT delivered to NuMI 756 kW hourly beam power record achieved

NOvA Publications and Theses

- 7 Peer-reviewed publications to-date. Total of 31 Ph.D. Theses Defended.
 - 3-flavor oscillations with neutrinos

PRL 116 (2016), 151806 PRD 93 (2016), 051104 PRL 118 (2017), 151802 PRL 118 (2017), 231801 PRD 98 (2018) 032012

- NC disappearance, 2017 PRD 96 (2017), 072006
- Seasonal variation of multi-muon cosmic ray events in the Near Detector, 2019 PRD 99 (2019), 122004
- Two in journal Review.
 - NC Coherent π^0 production arXiv:1902.00558
 - NOvA's 1st 3-flavor results with v and \overline{v} arXiv:1906.04907

In the past year •

- Shaokai Yang, Long-baseline NC Disappearance, Cincinnati
- Rijeesh Keloth, Short-baseline sterile search with v_{τ} appearance, Cochin University of Science & Technology
- Barnali Chowdhury, Cross-section ratio, South Carolina -
- Kuldeep Kaur Maan, Empirical Neutrino Flux Constraints, -Panjab University
- Tristan Blackburn, Muon (anti)neutrino disappearance, Sussex
- Erika Cataño-Mur, Oscillation Parameter Fits in 3-flavor analysis, Iowa State
- Andrew Vold, ve ID with long short-term memory, Minnesota
- Biswaranjan Behera, v_u CC inclusive cross-section, IIT -Hyderabad
- José Andrés Sepulveda Quiroz, Constraining NuMI kaon production using uncontained v_{μ} CC in the Far Detector, Iowa State
- Siva Prasad Kasetti, Short-baseline sterile search with v_e appearance and v_{μ} disappearance, Hyderabad
- Vladimir Bychkov, v_{μ} disappearance with uncontained events, -Minnesota
- Nitin Yadav, Electromagnetic showers in cosmic rays, IIT -Guwahati

Test Beam

- Start of Filling Detector with Scintillator Started in April
- Following successful filling of 1st of 2 blocks, scintillator was contaminated with water during transfer from storage tank to tanker.

- We decided to
 - proceed on outfitting and commissioning
 1st block with remaining available beam,
 - address filling of second block during shutdown.

 Remaining block will be filled this summer with excess NOvA oil at Ash River and UT/Texas A&M

Test Beam Commissioning

- Examining rates, basic reconstruction, detector calibration
- Tuning up triggers, chambers, particle ID
- Beam scans to reduce halo-to-beam ratio
- Scans of primary beam intensity and secondary beam energy to find optimal operation configurations.
- Analysis will continue throughout the summer

Cell Attenuation Calibration with Cosmic-ray muons

Recent Progress on Cross-Section Measurements

- Paper on Neutral Current Coherent π^0 production submitted to PRD
 - In second round of referee comments
- Charged Current π^0 production cross-section in internal review
- + ν_{μ} Charged Current Inclusive cross-section
 - An important measurement, and challenging in an an energy range with a poorly-constrained mix of channels.
 - We have revisited choice of kinematic variables and are re-working the unfolding scheme.
- A variety of other measurements are in progress

Progress on Cross-Section Tuning

- Held 1-day joint workshop with MINERvA in September
 - Comparison of methods and results of the MINERvA and NOvA tunes
 - NOvA tune shared with MINERvA expert in advance.
 - E.g., NOvA use of RPA suppression for Resonance Production
 - Long-range nuclear correlation not consistent with higher Q² in resonance production: indications our application of the effect is remediating other nuclear effects.
 - E.g., both experiments see excess of data at lowest hadronic energies, in antineutrino tune.

• Cross-section tuning paper drafted, in internal committee review

- Software package to be released at same time has been tested in MINERvA and T2K.

Joint effort with T2K

- Third formal joint workshop held at Fermilab in February.
 - Detailed meeting between experts, working group conveners, and leadership.
- Leadership session
 - Discussed inter-collaboration agreement for sharing of information.
 - Agreed in April.
 - Agreed to revisit timeline and scope of first joint fits in light of 2020 results
 - Default target of 2021.
 - Next joint Workshops in October, March.
- Comparisons of NOvA and T2K cross-section models, analysis methods, simulations.
- Identification of areas for further investigation for possible sources of correlated uncertainties
 - Multi-nucleon effects (2p2h)
 - Single pion production
 - Final state interactions
 - Modeling ν_{μ} vs ν_{e}, ν vs $\bar{\nu}$

L. Pickering (T2K)

Sterile Neutrino Search via Neutral Current Disappearance

• Update to first long-baseline sterile neutrino search with antineutrinos

- Top-up with 78% more antineutrino exposure coming in a few weeks.
 - Targeted for DPF.
- Improvements to treatment of several systematic uncertainties.

2018 Far Detector NC Spectrum:

🛟 Fermilab

3-flavor Oscillation "Top-Up" Results

- 78% more antineutrino mode exposure than 2018 result
 - 8.85x10²⁰ POT FHC, 12.33x10²⁰ POT RHC
- Same analysis techniques, selections, input systematic uncertainties.

Near Detector $(\overline{v}^{)}_{\mu}$ Spectra in Quantiles of Hadronic Energy Fraction

Used to improve prediction of v_{μ} disappearance and v_e appearance signal predictions at Far Detector

🛟 Fermilab

Far Detector Data and Oscillation Fit

see arXiv:1906.04907 for full table

Systematic Uncertainties on ve signal and background prediction

NOvA Preliminary

Systematic uncertainties are evaluated by modifying simulation throughout analysis chain.

Most significant uncertainties compared to the statistical uncertainty are Crosssections, calibration, detector response, acceptance effects.

18 19 July 2019 P. Shanahan I Fermilab PAC Meeting

😤 Fermilab

3-flavor Neutrino Oscillation Results for Neutrino 2020

- Current projection: Additional 75% neutrino-mode data.
 - 15.5x10²⁰ POT neutrino mode, 12.33x10²⁰ POT antineutrino mode.
- A variety of analysis improvements are targeted or *under investigation*
 - Neutrino interactions
 - Moving from GENIE 2.12 to GENIE 3.
 - Detector simulation
 - Cell brightness variations in Near Detector, Geometry improvements, light level tuning using protons
 - Calibration
 - Updated self-shielding and threshold corrections for cosmic muons, *finer time bins*
 - Reconstruction and Selection
 - New "slicer", retraining of CVN, *exploring new CVN architectures, new LSTM energy estimator, early cosmic rejection for faster processing.*
 - Potentially new Systematic Uncertainties on each of the above.
 - New Extrapolation and Oscillation Parameter Fitting Strategies
- Targeting new production campaign September-January

Long Term Sensitivity Projections

- Assuming 2019 Analysis Techniques
- No systematic uncertainties
- Assumed beam delivery
 - In FY20-25:
 - 750 kW, 800 kW, 800 kW, 900 kW, 900 kW, 1000 kW
 - 40 week runs starting FY21
 - Scaled from 2019 beam delivery as "700 kW @ 34 weeks"
- Beam Progress
 - 1 MW-capable target scheduled to be installed during current summer shutdown.
 - Complex capable for 1.2s rep rate (down from 1.33s) after current shutdown.
 - 1.4s whenever Muon program is taking beam.
 - Booster improvements for PIP-II scheduled for completion by 2023 will allow 900 kW.
- End of NuMI Running: start of Long LBNF shutdown in 2025.

Evolution of Systematic Uncertainties

- Paths to reduce uncertainties for which current value would be significant in final data set, which will have 4x current v and 3x current v̄ statistics.
 - Neutrino cross-section model
 - Continued benefit from T2K and MINERvA experience.
 - Neutron response
 - Recent studies indicate smaller discrepancy than seen in 2018 study
 - Investigating possible overlap with cross-section uncertainties.
 - Detector response
 - Test Beam
 - Acceptance
 - Investigating possibly overlap with cross-section uncertainties
 - Test beam

NOvA Preliminary

Summary

- NOvA has accumulated a combined 23.8x10²⁰ POT over 5 years of running.
- We are looking forward to increasing beam power over the coming years.
 - New high-power target being installed this summer.
- Publications in peer review
 - Updated 3-flavor oscillation result with neutrinos and antineutrinos.
 - First cross-section result NC Coherent π^0 .
- Future plans
 - Updated NC Disappearance sterile search with antineutrinos shortly.
 - New 3-flavor results with updated analysis for Neutrino 2020.
 - More cross-section results coming.
 - More sterile searches
 - Various exotics searches
- Combined fit with T2K.
- Mass Hierarchy reach of 3-5 sigma for favorable scenarios.

Extras

Candidate antineutrino interaction with neutron

NuMI Beam

- 700 kW design power
- Hourly power record of 756 kW achieved this year.
- ν and $\overline{\nu}$ beam modes selected by polarity of focusing horn current

Neutron Systematic

• Antineutrino interactions produce neutrons.

р

n

- Current evaluation of uncertainty
 - Scale lower energy neutron-induced energy depositions to improve data-simulation match.
 - Shifts average $\stackrel{(-)}{\nu}_{\mu}$ energy by 0.5% (1%)
- More recent studies with a more general neutron selection indicate a smaller uncertainty may be appropriate.
 - Investigations continue.

n

 $\overline{\mathbf{v}}$

Predict Oscillated

Backgrounds

V_e Beam Backgrounds

Tune Near Detector beam v_e prediction using v_{μ} constraints on parent π , K yields, Michel electron multiplicity distributions for NC, v_{μ}

Single scale factor for \overline{v}_e

Cosmic Rays

Data-driven, using copious beam trigger time sidebands and random pulser triggers

Cross-section tune

- Start with GENIE 12.2
- $M_{\text{A}}\xspace$ increased by 5%
- Suppression of QE from long-range correlations (RPA), Valencia model, via MINERvA (R. Gran)
- Application of RPA suppression to resonance production, as a placeholder for suppression at low Q² of unknown origin. Observed in our data, earlier in MiniBooNE, MINOS, MINERvA.
- Increase DIS with W>1.7 GeV/c² by 10% for better agreement with our data (neutrino-only).
- Reduce non-resonant single pion production for W<1.7 GeV/c²

(following Rodrigues, Wilkinson, McFarland)

 2p2h: Scale GENIE empirical Meson Exchange Current model (Dytman) in bins of q₀ and Iq₃I to fit remaining difference from data, separately for neutrino and antineutrino. Informed by MINERvA, T. Katori.

NOvA Preliminary

Cross-section tune in W and Q²

Figure 29: Reconstructed W, FHC

Figure 31: Reconstructed Q^2 , FHC

Figure 32: Reconstructed Q^2 , RHC

Impact of Systematic Uncertainties on ve Signal and Background

🛟 Fermilab

Other slices

	σ data (gaussian)	FC p-value	FC σ	NOvA FD 8.85×10 ²⁰ POT equiv v + 12.33×10 ²⁰ POT ⊽
IH	1.65	0.057	1.89	
LO	1.16	0.112	1.59	
NHLO	1.16	0.121	1.55	
IHUO	1.65	0.080	1.75	
IHLO	1.93	0.051	1.95	UIINormal
				0.5 hierarchy

0^E

0.4

___<u>_</u> 0.7

0.5 $\sin^2\theta_{23}$ 0.6

ND ν_{μ} Spectra with POT and Area Normalization

NOvA Preliminary

🛟 Fermilab

Test beam layout

- Detector consists of two 31-plane
 2x2 blocks + one horizontal plane
 at FTBF's MC7
- Exposed to MCenter-sourced e, μ, π, p, K, π⁰ tertiary beam with known momentum from 0.2 - 2.0 Gev/c
- Provide absolute measurement of detector response and cross-check of NOvA calibration chain

Alex Sousa, University of Cincinnati

Systematic Pulls

Wrong-sign contamination in antineutrino beam

7 Fermilab

Bi-event rate plot

- Caveat: this picture suppresses energy dependence and other useful variables

Effect of extrapolation on systematic uncertainties

😤 Fermilab

Sensitivity Projections for Maximal Mixing Rejection and Octant

‡ Fermilab