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Small v, contamination

Flux (/cm*/102'POT/50 MeV)

e from u-decay in tunnel
a=sy and K-decay.
Dominant v, flux with Flux composition is
650 MeV peak from 7= decay. v, > 17/4 > U, > U, (in neutrino-mode)
Above 3 GeV K= decay. roughly differing by factor 10 each.



90 cm carbon target

Proton ——>e=—"" S>> < Flux Prediction

>
Neutrino

* Interactions of protons inside target simulated with FLUKA
based on proton beam profile measured with upstream beam
monitors.

e Horn focusing and out-of-target interactions (Al in horns and Fe in
walls) Of outgoing mesons using Geant3 + GCalor.

e Afterwards go through interaction chain and apply weights to

tune output of MC generators to external hadron production
data (mostly NA61/SHINE).

e Covariance matrix is used to constrain SuperK flux using
near detector measurements.



Uncertainties on neutrino flux

e Beam profile and off-axis angle
Non-hadronic

* Horn current, field, uncertainties
(next slide)

e Beamline , modeling

 Hadron interactions (largest uncertainty)
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Fractional Error
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Non-hadronic uncertainties
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e For right-sign v, proton beam profile is most important.
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— causes peak energy shift due
to v beam direction change

* For cooling water, 1 mm layer for horn1 inner conductor is considered (<2% near
flux maximum). We are trying to check with spare horn1 whether this 1 mm

assumption is sufficient.

e For wrong-sign vy above 1 GeV, horn + target alignment and

asymmetries important



NA61 measurements for T2K

* Hadron production experiment, momentum
measurement with TPCs in superconducting magnets,

PID with dE/dx (Bethe-BIoch) and time of flight.

. NAG61/SHINE
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MTPC-R thesis, slightly modified for clarity.
Beam Target | Year | Stat (10°) | Outgoing PID Usage at T2K
roonr. 7 Thin | 2007 0.7 7wt K, KO, A past
beam |;
2em  (2€M) | 2009 54 | m K% p, K%, A |inuse
protons at
31 GeV/c




Thin target tuning

Proton
beam

o

GCALOR Thin + Xsec

Thin target 2 cm
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Tune based on hadronic
interaction history
Interaction length Multiplicity
tune Oprod(p+C) to NAG61 measurement Mostly 30 GeV p+C data by NAG1
“Vertex” weight
d’n d’n
At interaction ODATA / oM dp do dp do
DATA MC

% p, 6. outgoing particle kinematics

“Attenuation” weight

For distance L
traversed in matter
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Most important hadronic
uncertainties with thin tuning

e |nteraction length (mostly proton prod. xsec)

 Multiplicity uncertainties for mesons and protons
- propagated from NAG1
- Feynman scaling to relevant momentum scale
- Extrapolation beyond coverage
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Move to replica tuning

e NA61 took data with full-sized

replica of T2K target, binned k...
by (2., 0) | e

V' Ze6

* |gnore interactions inside the
target and apply single DATA/
MC weight based on exiting
particle.

total replica

J

e Out-of-target interaction and Reduced uncertainty from

outgoing particles not covered * no interaction length uncertainty

by replica data are tuned with * single weight per exiting particle
thin target data.

Beam Target | Year | Stat (10°) | Outgoing PID Usage at T2K

protons at . mm g
31 GeV/c T2K 200/ 0.2 % beam €1 7 L} % '\,‘;;i 2 4} o

replica | 2009 2.8 = next T2K results
(30cm) | 5010 10. 7, K=, p in development 10




Move to replica tuning

SK, +250 kA, v, SK, +250 KA, V.
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~90% of right-sign vy, ~70% of wrong-sign v, is
covered by 2010 replica data
Beam Target | Year | Stat (10°) | Outgoing PID Usage at T2K
protons at 5007 0.2 o o mem
31 GeV/c T2K ; beam 121 L} %2 gom
replica | 2009 2.8 = next T2K results
(30cm) | 5010 10. 7, K=, p in development 11




Replica tuning with 2009 data ()

Achieve 5-8% uncertainty near the flux peak
from reduced interaction length uncertainty.

SK: Neutrino Mode, vy

For interactions that do not receive tuning weights
from replica or thin tuning (“unconstrained
interactions”), assign multiplicity uncertainty in

XrF,pT1 space motivated by MC-MC comparisons.
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Replica tuning with 2010 data (7+, K*, p)

Adds K+ and proton yields + increased stats.
Achieve ~4% hadron interaction uncertainty

1. checked additional systematics — seems robust
2. checking consistency with thin tuning

over wide energy range.
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Consistency checks of tuning methods

* Conventional tuning

NAG61 DATA

FLUKA MC X iNAB1” w/FLUKA tuned flux

« Fake tuning using fake data @ check consistency by

comparing with “fake truth’

“NA61” w/Geant4

FLUKA MC x “NAGT” w/FL UKA — “tug}ed” flux
Geant4 MC — “true” flux

Mainly comparing to Geant4's NuBeam physics list, which
Is mostly FTFP BERT in kinematic region of interest. 14



i_ Work in Progress

15- No tuning

Consistency checks
of tuning methods 7.
Before tuning -

* Fluka/NuBeam differ by
about 0~7% below 5 GeV.
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Consistency checks
of tuning methods

Before tuning

* Fluka/NuBeam differ by

/

about 0~7% below 5 GeV.

Fake thin tuning

» Agreement at 2% level _—

below 1 GeV. =

* Discrepancy of about 5%

at 2~5 GeV range.

luka 2011.2x (untuned) / Geant4 NuBeam
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Consistency checks
of tuning methods

/

Before tuning

* Fluka/NuBeam differ by
about 0~7% below 5 GeV.

Fake thin tuning

» Agreement at 2% level _—

below 1 GeV. =

* Discrepancy of about 5%

at 2~5 GeV range.

Fake replica tuning

—

 Agreement at 2% level for
wide range up to 5 GeV. <=
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Consistency checks
of tuning methods

Tlugéng to NA61 (neutrino mode) Thin target tuning to fake data (neutrino mode)
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For tuning to NA61 data no “truth” is
available, but can compare thin and replica
tuned fluxes. Above 1 GeV a discrepancy
similar to that seen in fake thin tuning is
observed.

Seems to be related to interactions

with insufficient data for thin tuning?

— extend fake thin tuning to understand origin
and assess systematic assignment
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h h h h
Treatment of T W

interactions in T
thin target tuning % %}
A A A P 1

Incoming particle Elastic Quasi-elastic Production

 wning . Most
Proton ) J ) important
\ ¢ uncertainty ,
N for v-beams
® v ® tuning
Meson x Limited error model v uncertainty
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h h h h
Treatment of T W

interactions in T
thin target tuning % %}
A A A P 1

Incoming particle Elastic Quasi-elastic Production

~wning . Most
Proton ) J ) important

\_ v uncertainty ,

N—— for v-beams
- % % 7~ %tuning

Limited error model

'  uncertainty ‘

Relying on MC-MC comparisons for
some systematics due to insufficient
hadron production data.
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! " h h
Treatment of T W
interactions in o

fragments

thin target tuning % %J
A P

Incoming particle Elastic Quasi-elastic Production
Proton P4 J ) important
\ \. ¢ uncertainty |
| N for v-beams
% v 77 % tuning \
Meson x Limited error model v uncertainty

Mostly just a change in momentum direction, no change in Relying on MC-MC comparisons for

number of mesons — indirect effect on neutrino flux. some systematics due to insufficient
hadron production data.

However: for E>1GeV flux even O(10mrad) change can
affect neutrino flux if particle is not focused by horns.

21



h h h h
Treatment of T T
interactions in ‘ frag

thin target tuning % %J
A D, 1

A A

Incoming particle Elastic Quasi-elastic Production

Most

/7 Vtuning >

Proton P4 \ . ) iImportant
\ \. ¢ uncertainty |
, | SN for v-beams
[/ % tuning N\
Meson ) 4 - RV , g N\
Limited error model v uncertainty.

T, ——— -

Mostly just a change in momentum direction, no change in Relying on MC'.MC Comp.arlsor.}s. for
number of mesons — indirect effect on neutrino flux. some systematics due to insufficient

hadron production data.
However: for E>1GeV flux even O(10mrad) change can

affect neutrino flux if particle is not focused by horns.

At fake tuning level it seems that both elastic and inelastic scattering of
mesons contribute to the observed discrepancy. Proper treatment and
systematics assignment should be investigated in the future.

Note with replica 2010 tuning ~90% of flux is covered with replica data, so

this matters mostly for remaining 10% and out-of-target interactions. .



Towards further improvements

SK: Neutrino Mode, v,

SK: Neutrino Mode, v,
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Near flux peak proton ,

beam profile i

— can be constrained to
~1/3 using INGRID beam
direction measurement?

see also Mark’s talk toward HyperK
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Towards further improvements

SK: Neutrino M
— _| T
®)

LE B

— 03—

< B

= R
R =

0 -
S B

= gl

ode, v,

Hadron Interactions

Proton Beam Profile & Off-axis Angle

Horn Current & Field
dxE,, Arb. Norm.

—— Material Modeling
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Replica 2010 Error
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Thin Error

T2K Work in Progress

10
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Low-energy flux error dominated
by nt-rescattering (Al, Fe).
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At higher energies also K-scattering.
— future hadron production data
from NA61, EMPHATIC, ...?

see also Mark’s talk toward HyperK
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Towards further improvements

SK: Neutrino Mode, v,
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see also Mark’s talk toward HyperK

SK: Neutrino Mode, v,
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At high-E for wrong-sign
flux beamline optics
dominant source of
systematics.
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Summary

By moving from thin to replica target tuning, T2K achieves
significant reduction of hadron interaction uncertainties to
5% level near the flux peak. Will be used in upcoming
physics analyses.

Soon we expect 5% level error for wide energy range (up
to high-E) from additional K, p data in replica 2010 tuning.

Using fake data, confirmed both thin and replica target
tuning are consistent with “fake truth” to ~2% level near
flux peak. With replica tuning we see better consistency up
to higher energies.

Further systematic reduction with meson scattering data,
and also utilizing INGRID beam direction measurements. ,,
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v, flux at SK by

Flux [/cm?/10*'POT/50MeV]
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exiting PID, +250 kA

v, flux at SK by exiting PID, +250 kA
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Neutrino mode (13a nominal FLUKA 2011.2x.2) 2

v, flux at SK by exiting PID, +250 kA v, flux at SK by ex1t1ng PID +250 kA
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Neutrino mode (13a nominal FLUKA 2011.2x.2)

v, flux at SK by exiting PID, +250 kA
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