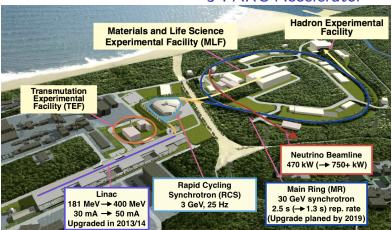
J-PARC Neutrino Beamline Proton Beam Monitors

Megan Friend For the J-PARC Neutrino Beam Group

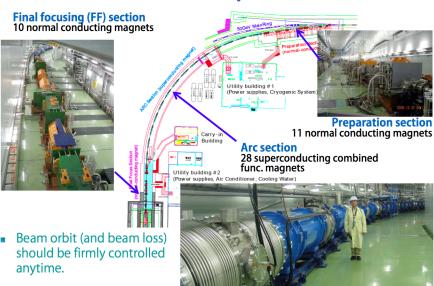

KEK

October 23, 2019

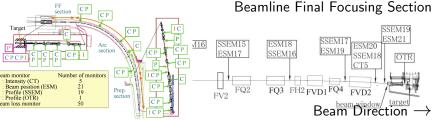
Outline

- Neutrino Primary Proton Beam Monitors
 - Overview
 - Upgrades

J-PARC Accelerator


- J-PARC = Japan Proton Accelerator Research Complex
- Accelerates proton beam to 30 GeV by:
 - 400 MeV Linac (linear accelerator) \rightarrow 3 GeV RCS (Rapid Cycling Synchrotron) \rightarrow 30 GeV MR (Main Ring)
- MR design beam power: 750 kW (currently ~485 kW)

J-PARC Beam Power Upgrades


		. •			
Beam Power	485kW (achieved)	750kW (proposed) [original]	1MW (demonstrated)	1.3MW (proposed)	
# of protons/ pulse	2.4 x 10 ¹⁴	2.0x10 ¹⁴ [3.3x10 ¹⁴] ₊₂	2.6x10 ¹⁴ +1	8% → 3.2×10 ¹⁴	
Operation cycle	2.48 s	1.3 s [2.1 s]	1 shot	1.16 s	

- Currently: 485 kW with 2.48 s repetition rate
 - 500+ kW achieved during beam tests
- Plan to upgrade MR power supplies in 2021/2022 to reach 1.3 s repetition rate
 - RF improvements can allow for further decrease to 1.16 s
- Plan to improve beam stability, reduce MR beam losses to increase number of protons per pulse
- Upgrades to J-PARC neutrino beamline needed to accept high power beam

Primary Proton Beamline

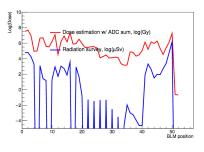
Neutrino Primary Proton Beam Monitors

- Beam monitors are essential for protecting beamline equipment and understanding proton beam parameters for neutrino flux MC
- 5 CTs (Current Transformers) monitor beam intensity
- 50 BLMs (Beam Loss Monitors)
- 21 ESMs (Electrostatic Monitors) monitor beam position
- 19→18 SSEMs (Segmented Secondary Emission Monitors) non-continuously monitor beam profile
- 1 OTR (Optical Transition Radiation) Monitor continuously monitors beam at target → See talk by G. Santucci
- MUMON (Muon Monitor) continuously monitors secondary muon beam position and profile → See talk by T. Honjo

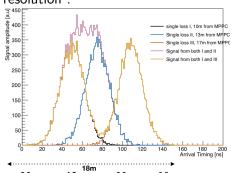
5 CTs (Current Transformers)

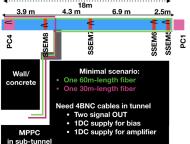
CTs

- Monitor proton beam intensity
 - Ferromagnetic core made of FINEMET[®] from Hitahi Metals
 - 50-turn toroidal coil
- Biggest issue : calibration !
 - CT's calibrations have drifted by ~2% with respect to one another over the full T2K run
 - Direct systematic error on cross section measurements
 - Cancels in near/far fit for neutrino oscillation analysis
 - Calibration campaign under way
 - Absolute calibration + analysis method update was done in 2014
 - Took calibration data with CT02 \rightarrow extrapolate number of POT to CT05 using beam data
 - Data for direct absolute calibration of CT05 taken in 2018
 - Absolute CT error still being finalized, but error should be reduced 2.7%→<2% after re-calibration campaign

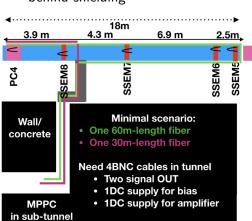


50 BLMs (Beam Loss Monitors)


- Wire proportional counter filled with an Ar-CO₂ mixture
- Continuously monitor beam loss
- The BLM signal is integrated during each beam spill, and if it exceeds a threshold a beam abort interlock signal is fired
- BLMs have been working stably
- R&D for new BLM upgrade ongoing :
 - OBLM BLM by optical fiber
 - Particles hit optical fiber + produce cherenkov or scintillation light
 - Photon detector at end of the fiber
 - Good timing resolution to give loss position information in the case of localized loss


BLMs

Expected (optimistic) signal resolution :



Optical-BLM R&D

Assuming:

- Proton speed: 3.3ns/meter
- Light in fiber: 5ns/meter
- Signal separation: 8.8ns/meter if layout fiber such that earlier signal reaches MPPC in advance
- Bunch width: ~13ns (dominant factor in discriminating the response timing)
- Signal readout resolution 5ns
- No additional smearing by geometrical effects
- Background≪signal
- \rightarrow Signal peaks are well-separated if two signal-inducing loss positions are separated by $>\sim$ 7m

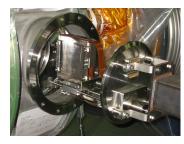
- Installed 2 optical fibers along the beamline for first beam test (yesterday!)
- Read-out by MPPCs in subtunnel behind shielding

Optical-BLM R&D

21 ESMs (Electrostatic Monitor)

- Four segmented cylindrical electrodes surrounding the proton beam orbit
- Non-destructively, continuously monitor the proton beam position

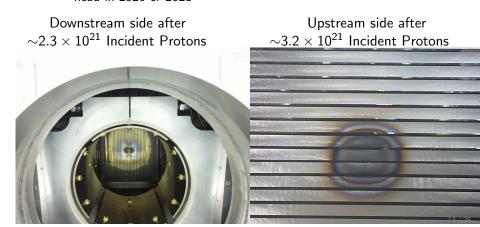
ESMs



- \bullet Precision on the beam position measurement is better than 450 $\mu\mathrm{m}$
 - Including resolution + alignment
 - However, ESMs are currently mainly used for monitoring stability of beam position, rather than for calculating absolute beam position
- Now thinking of ways to improve the ESM measurement precision
 - Re-calibration campaign needed
 - ullet Considering analysis update (peak search o signal integration) to improve measurement stability

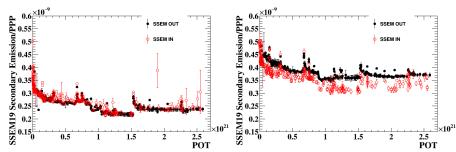
SSEMs

19 →18 SSEMs (Segmented Secondary Emission Monitor)


- Measure beam profile during beam tuning by secondary emission from Ti foil strips
- Two 5-μm-thick titanium foils stripped horizontally and vertically, with a 5-μm-thick anode HV foil between them
 - Strip width: 2~5 mm, optimized according to expected beam size

- 1 SSEM causes 0.005% beam loss \rightarrow Only most downstream SSEM (SSEM19) can be used continuously
 - Others remotely move into and out of the beamline
 - SSEM19 used continuously → Need to carefully check any possible degradation as integrated POT on monitor increases

SSEM Foil Discoloration

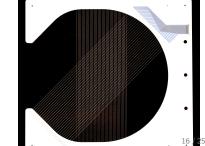

- SSEM19 is the most downstream SSEM and is used continuously
- SSEM19 foil inspection was performed in summer 2017 (downstream side) and fall 2018 (upstream side)
 - Significant discoloration of SSEM19 foils observed
 - No significant signal degradation, but plan to replace the monitor head in 2020 or 2021

SSEM19 Secondary Emission Stability

SSEM19X Secondary Emission

SSEM19Y Secondary Emission

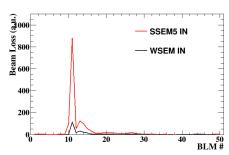
- Secondary emission/PPP vs integrated incident POT
 - SSEM19 secondary emission doesn't seem to be degrading (other than initial "burn in") → generally stable
 - Some jumps correlated with beam power
 - Upstream plane (SSEM19Y) can "see" if upstream SSEM18 is IN or OUT of beam – effect by emitted electrons from upstream SSEM
- Will continue to use SSEM19 continuously for now, plan to exchange during summer 2020 or 2021


Why Is Non-Destructive (+ Minimally-Destructive) Proton Beam Monitoring Important?

- Standard monitors measure the beam profile by intercepting the beam they are *destructive* and cause *beam loss*
 - Absolute amount of beam loss is proportional to beam power and volume of material in the beam
- Beam loss can cause :
 - Irradiation of and damage to beamline equipment
 - Increased residual radiation levels in the beamline tunnel
- Foils in the beam may degrade
 - Rate of degradation may increase as the beam power increases
- The beam profile must be monitored continuously
 - So, R&D for J-PARC proton beam profile monitors that work well at high beam power is ongoing

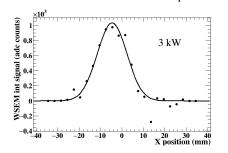
- New WSEM Beam Profile Monitor

 New Wire Secondary Emission Monitor (WSEM) designed to measure proton beam profile in J-PARC neutrino beamline
 - Developed in collaboration with engineers at FNAL, supported as a US/Japan collaboration project
- Monitor beam profile using twinned 25 μ m Ti grade 1 wires
 - Exact same principle as SSEMs but with reduced material in the beam \rightarrow 10x reduced beam loss.
 - C-shape allows monitor to be moved into and out of the beam wile the beam is running
 - Now considering other wire materials (carbon, CNT, SiC) to further improve robustness

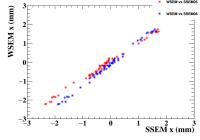


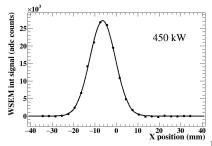
WSEM Beam Loss Check

- ullet Prototype WSEM installed in J-PARC neutrino beamline 2016 \sim
- Checked performance during various beam tests
- Beam loss by WSEM lower than SSEM by factor of ${\sim}10$
 - Note: BLM acceptance is different for SSEM vs WSEM
 - Residual radiation @SSEM18 is 1.2mSv/hr at 475kW due to backscatter from TS
 - Residual radiation @WSEM due to continuous use at 465kW was 300μSv/hr


Loss due to WSEM vs that due to neighboring SSEM :

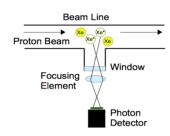
Monitor	Strip Size	Area in Beam (mm²)	Measured Signal (a.u.)	Volume in Beam (mm ³)	Measured Loss (a.u.)
SSEM WSEM	$2\sim$ 5mm \times 5 μ m 25μ m $ ext{$\overline{\pi}$}$ x2	7.07 0.24	60300 2300	0.106 0.007	872 112
Ratio SSEM/WSEM	_	29.5	26	15.1	7.8


WSEM resolution, precision equivalent to SSEM

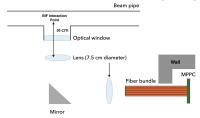

- Position measurement precision 0.07mm, stability ±0.15mm
- Width measurement precision 0.2mm, stability ± 0.1 mm
- No issue during long-term stress test
 - 160 hours in 460 \sim 475kW beam $\sim 5.6 \times 10^{19}$ incident protons

WSEM Signal Check

WSEM vs SSEM x :


SSEM18→WSEM Exchange

- Replaced SSEM18 with WSEM in December 2018
 - Since beam loss is significantly lower with WSEM, can use WSEM18 continuously in case of SSEM19 failure
 - Complete testing during upcoming J-PARC neutrino beam time

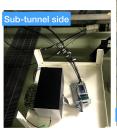

Beam Induced Fluorescence (BIF) Monitor • Uses fluorescence induced by proton

- Uses fluorescence induced by proton beam interactions with gas injected into the beamline
 - Protons hit gas (i.e. N₂) inside the beam pipe
 - Gas molecules are excited or ionized by interaction with protons, then fluoresce during de-excitation
- Continuously and non-destructively monitor proton beam profile
 - $5 \times 10^{-8}\%$ beam loss for 1m of gas at 10^{-2} Pa
 - $extstyle \sim 10^{-5} ext{x}$ less beam loss than 1 SSEM
 - Monitor development ongoing collaboration between KEK, IPMU/TRIUMF, Okayama Univ.

M. Friend et al., Proceedings of IBIC2016, WEPG66, 2016
S. Cao et al., Proceedings of IBIC2018, WEPC08, 2018
S. Cao et al., Proceedings of IBIC2019, 2019

Beam Induced Fluorescence (BIF) Monitor

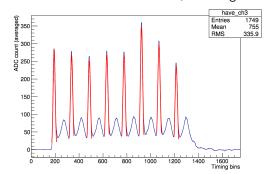
- Now doing R&D for various components :
- Gas injection :
 - For \sim 1000 photons/spill, need to **locally** degrade vacuum level \sim 10⁻⁵Pa \rightarrow \sim 10⁻²Pa
- Light transport and focusing : Must be radiation hard
- Light detection :
 - Must work in/near radiation environment
 - Must work down to very low light levels
 - Must be fast to compensate for drift of ions in beam space-charge
- Installing full working prototype in beamline now!


BIF Monitor Gas Injection, etc

- Developed pulsed gas injection system
 - Inject \sim 400 μ s gas pulse triggered by beam spill trigger
 - Two-stage pulse valve system with buffer chamber
 - Control pressure upstream of 2nd pulse valve + act as safety chamber in case of valve failure
 - Control + interlock system for gas injection also developed
- Black coating of beamline chamber to prevent reflected light (background)
 - Diamond-Like Carbon (DLC)
 - Various tests of gas injection in a test chamber + the true beamline
 - To ensure valve stability + robustness
 - To compare measured gas flow to that predicted by simulation
 - To ensure that beamline components are not affected by injected gas
 - No issue found so far! Planning gas injection beam test during upcoming neutrino beam run

BIF Monitor Light Transport and

Optical fiber array



Detection System

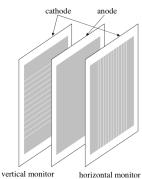
- Focus light from viewport on beampipe onto array of optical fibers
- Transport light away from high radiation environment near beampipe to optical sensors in lower-radiation subtunnel
 - Couple each fiber to MPPC
 - Inexpensive, fast, high gain
 - But not radiation hard
- Challenge: optimize transmission and collection efficiency to increase number of collected photons (expected)
- Unexpected challenge : beam-induced noise on optical fibers
 - Suspect Cherenkov light (on-timing) and neutrons (off-timing)
 - Must mitigate by optical filtering or shielding or subtraction or...
- In parallel, developing more standard optical readout system MCP-based image intensifier coupled to radiation-hard CID camera, 125

Beam-Induced Noise On Optical Fibers

- Tested $800\mu m$ core silica optical fibers coupled to MPPC in planned BIF location during last beamtime (planned design)
- Found a large beam-induced background on the optical fibers :
 - \sim 150 p.e.'s in-bunch timing + \sim 150 p.e.'s out-of-bunch timing (c.f. expected 1000 detected BIF photons per spill / 30 fibers)
 - Suspect due to Cherenkov light (on-timing) and neutrons (off-timing)
 - Correlated w/ BLM44 seems to be due to scattering from FQ2
 - Plan to mitigate by optical filtering test next month!
 - If that doesn't work, shielding or background subtraction or ...

Conclusion

- Neutrino primary proton beam monitors generally working well
- Now working on R&D for reduced-loss and non-destructive proton beam profile monitoring


Backup Slides

J-PARC NU SSEM Principle and Design

SSEM Principle anode cathode anode Proton beam Proton beam

- Protons interact with foils
- Secondary electrons are emitted from segmented cathode plane and collected on anode planes
- Compensating charge in each cathode strip is read out as positive polarity signal

J-PARC NU SSEM

- Single anode plane between two stripped cathode planes
- 5 μ m thick Ti foils