

UK Research and Innovation

LBNF Target Design

Dan Wilcox

(High Power Targets Group, RAL) on behalf of combined UK and Fermilab LBNF project team

NBI 2019, Fermilab

Outline

- Background
- Target concept selection
 - Physics performance
 - Engineering simulations
 - Optimal tradeoff
- Target selection result
- Design assurance
- Future work

Background

- The LBNF target will be an in-kind contribution from the UK's Science and Technology Facilities Council
 - Engineering: High Power Targets Group, RAL
 - Physics: John Back, Warwick University
- 3 options originally proposed, 'Target Concept Selection' meeting held at Fermilab 23rd-25th July 2019
- The preferred option has been selected, and has passed conceptual design review on 21st August 2019

Target Concepts

- Optimised physics design by Laura Fields indicates a long target (4λ, ≈2m) is preferred for maximum CP sensitivity
- 3 options developed based on experience from T2K (2λ , 1m)
 - Helium cooled, graphite core, titanium vessel and windows
 - No thermal shock in coolant, target runs hot to anneal radiation damage, low activation/corrosion

Target Concepts

1: Single 2.2m long target with remote-docking downstream support

3: Single intermediate length (≈1.5m) cantilever target

2: Two ≈1m long cantilever targets, one inserted at either end of horn

Target Concepts

• Upstream inlet geometry is the same in each case

Instantaneous Physics Performance

- Simple cantilever gives best performance for a given length (but the achievable length will be limited)
- DS supported target gives best performance for lengths where a simple cantilever is not possible
- Double 1m targets offer similar performance to a single 1.5 m cantilever

Plot courtesy of J. Back, Warwick University

Instantaneous Physics Performance

 John Back calculated the extra number of days running per year required to achieve the same physics as a 2.2m target with downstream support

Required 3σ exposure increase: Double Target 9.5% (19 days/run yr) 1.5m Cantilever 9.5% (19 days/run yr) 1.6m Cantilever 6.2% (13 days/run yr)

Plot courtesy of J. Back, Warwick University

UK Research and Innovation

Target Concept Selection

- No engineering showstoppers for any of the options
 - Further work required to manage vessel temperatures
 - 1.5m cantilever looks achievable, 2.2m target will require a downstream support
- Consensus on a preferred option was reached at a 'Target Concept Selection' meeting held at Fermilab
 - Included members of the engineering and physics teams

Performance = (instantaneous physics) x (facility uptime)

Target Concept Selection

			Option 3: intermediate
	Option 1:1x2m long	Option 2: 2x1m long	cantilever
Instantaneous physics	Best instantaneous physics.	Needs an extra 19 days/yr to match option 1.	1.5m needs an extra 19 days/yr (13 days/yr at 1.6m).
Engineering performance	No showstoppers. High heat load. Unstable until supported.	No showstoppers. High heat load but divided between 2 targets	No showstoppers. Pushing at the limits on cantilever length.
Manufacturability	Difficult to make long tubes. DS support adds complexity.	2 nd target low-mass manifold is complex.	Difficult to make long tubes.
Ease of remote maintenance	≈3 weeks exchange time, DS support adds time and risk.	≈2 weeks exchange time, 2 nd target adds some time and risk.	≈1 week exchange time, lowest complexity and risk.
Cost and schedule impacts	DS support somewhat increases cost and time.	2 nd target greatly increases cost and time.	Cheapest and fastest to produce.

Target Selection Result

- Single cantilever target selected to be taken forward
 - 1.5m has structural rigidity similar to proven T2K design
 - Future development will aim to increase the length further
 - 1.8m or more is best for physics (4 interaction lengths)
- Passed conceptual design review on 21st August 2019

Engineering – Heat Loads

	LBNF	NuMI	Т2К	
	1x1.5m		Achieved*	Design**
Integrated Power (kW)	24	4.9	8.7	22
Peak Energy Density (J/g/pulse)	100	282	73	185
Peak ∆T per pulse in graphite (°C)	142	400	≈80	147

*Measured operational data at 485kW **750kW Design simulation, 3.3e14 ppp in MARS v15

Engineering – Beam Induced Stress

• Peak occurs in the upstream window (Titanium) and the first 1m of upstream target (Graphite)

	Peak steady state stress (MPa)	Peak Δσ per pulse (MPa)	Tensile Strength (MPa)
Graphite	0.3	3	≈37
Titanium	29	40	≈898

Beam induced stress distributions after a single pulse:

Engineering – Fluid Performance

 Flowrate chosen to keep outlet temperature below 200°C to protect return piping, bellows, isolators, etc

	LBNF	T2K	
	1x1.5m	Design	
Flowrate (g/s)	26	32	
Pressure drop (bar)	0.21	0.73	
Peak Mach number ()	0.16	≈0.5	

Engineering – Thermal

• Flowrate chosen to keep outlet temperature below 200°C

LBNF@1.2 MW

Engineering – Thermal

- Heat load in outer can and flow divider increases with target length
 - Needs further work to address,
 e.g. reduce vessel volume
 and/or increase flowrate

Engineering – Structural Rigidity

Increasing Target Length

- Factors point towards a tapered (conical) outer container
 - Potentially good for structural mechanics, thermal management, and physics!
 - But may be difficult to manufacture accurately
 - Plenty of scope to optimise present design

Upstream part of Cantilever

Bending moment \rightarrow High, Volumetric heating \rightarrow Low

- Large tube diameter
- Large wall-thickness
- Compatible with vacuum buckling resistance \checkmark

Downstream part of Cantilever

Bending moment \rightarrow Low , Volumetric heating \rightarrow High

- Small tube diameter
- Small wall-thickness
- Compatible with vacuum buckling resistance \checkmark

Future Work

- Design and development of the 'As Long As Reasonably Achievable' cantilever target concept
 - Simulation and prototype manufacturing for tapered tubes
 - Detailed design and prototyping of upstream manifold
 - Further design assurance, off-normal cases, etc.
- Construct and deliver a ≈1.5m prototype, fit for use inbeam as a spare
- Construct and deliver an operational target, 1.5-1.8m long dependent on lessons learned from the prototype

Conclusions

- 3 preliminary target concepts were considered
- Single cantilever selected as the best combination of physics and reliability
 - Particularly if the length can be increased from 1.5 to ≈1.8m without compromising reliability
 - No engineering or manufacturing showstoppers found, but pushing the limits of cantilever length will be challenging
- Design work is ongoing, with feature prototyping due to start soon

