
July 16, 2019 S. Berkman 1

Vectorizing and Parallelizing
the Gaus-Hit Finder

Sophie Berkman
for the SciDAC HEP Reco Group

(G. Cerati, B. Gravelle, A. Hall, B. Norris, M. Wang)
LArSoft Meeting

July 16, 2019

SciDaC Project: HEP Event Reconstruction

July 16, 2019 S. Berkman 2

• Study improvements to HEP
event reconstruction using
vectorization and modern
computing architectures

• Liquid Argon:
– Took O(100 s) to process a

µBooNE event (8,256 wires)
• MCC8 reconstruction

– Improvements necessary for a
larger scale experiment like DUNE
(384,000 wires/ 10 kTon cryostat)

– Focus on vectorizing and
parallelizing low level signal
processing and event
reconstruction

• CMS: vectorize and parallelize
tracking code

Feasibility study: GausHitFinder
• Feasibility study: GausHitFinder

– Charged particles produce pulses on wires. Identify and extract parameters
associated with pulses (position, amplitude, width).

– Wires are independent; can be processed independently
– Few percent to few tens of percent of reconstruction depending on the

experiment
• Vectorization and parallelization developments were done within a stand-

alone version of the GausHitFinder developed by M. Wang, G. Cerati, B.
Norris
– Implements the Levenberg-Marquardt algorithm to do the fitting
– ROOT/ Minuit not suitable for parallelization - global memory management
– Stand-alone code is faster than the ROOT version even before vectorization and

parallelization.
– Will discuss results on stand-alone code, and then LArSoft integration

• All results are on overlay neutrino events simulated in MicroBooNE
• Stand alone code compiled with icc

July 16, 2019 S. Berkman 3

T. Usher

Pu
lse

 H
ei

gh
t

Time

Example Wire Pulses

Vectorization of Stand-Alone GausHitFinder
• Vectorization challenges:

– Minimization difficult because fits
converge in different numbers of
iterations

– Cannot fit multiple hits at the same
time

– Vectorize the most time consuming
loop, but this is not all of the code

• Vectorization Strategies:
– Compiler vectorization: use avx512
– Explicit vectorization on the most time

consuming loops
– Loops determined by profiling the code
– #pragma omp simd, #pragma ivdep

• Speed increases
– Explicit vectorization: ~70% faster on

KNL, ~90% faster on Skylake
– Compiler and explicit vectorization: 2

times faster on KNL and Skylake than
with no vectorization

July 16, 2019 S. Berkman 4

0

0.5

1

1.5

2

2.5

NO-VEC,
NO

PRAGMAS

SSE2,
PRAGMAS

AVX512,
NO

PRAGMAS

AVX512,
PRAGMASSP

EE
D

RE
LA

TI
VE

 T
O

 `N
O

-V
EC

, N
O

 P
RA

GM
AS

`

KNL SKYLAKE GOLD

Parallelization of Stand-Alone GausHitFinder
• Using OpenMP

1. Parallel for loop over events
2. Parallel region with OMP for + critical

(to synchronize output) over regions
of interest (ROI) on the wires

– Fastest with “dynamic” thread
scheduling

• Parallelization challenges:
– Algorithm has a relatively small

amount of work.
– Thread overhead may limit speed up

• Speed increases with parallelization:
– KNL: up to 100 times faster
– Skylake: up to 30 times faster

• The speed improvements from
parallelization are not yet included in
LArSoft

July 16, 2019 S. Berkman 5

G. Cerati

LArSoft Integration
• Integrated a version of the stand-alone code with the

Marquardt fitter into LArSoft
– Branch of larreco: feature/cerati_gshf-larsoft
– Marquardt fitting is implemented as a class called MarqFitAlg
– Does not depend on any external libraries

• New tool “PeakFitterMrqdt_tool.cc” does the fit using the
same Marquardt fitter as implemented in the stand alone
code.

• Can call this new tool instead of the default
“PeakFitterGaussian_tool.cc” in the GausHitFinder_module.cc
– Does the fitting in “findPeakParameters” function

• None of the current functionality was changed in this branch,
just has the option to use the new fitter

• Mike is also using this Levenberg-Marquardt fitter in LArSoft.

July 16, 2019 S. Berkman 6

LArSoft Validation
• Initial validation done on

uboonebuild01.fnal.gov, with overlay
neutrino events in MicroBooNE

• Results:
– Hit finder is 12 times faster on average

than the current LArSoft version.
– Physics results are nearly identical.

• Difference in number of hits at 0.02%
level

• 2% of hits with a difference in peak time
larger than 0.02 ticks

• Does not yet include all of the
vectorization and parallelization
improvements.
– No parallelization
– Uses sse instead of avx512

• Validation ongoing for ICARUS

July 16, 2019 S. Berkman 7

0.02- 0.015- 0.01- 0.005- 0 0.005 0.01 0.015 0.02
Default Hit Time - Marquardt Hit Time (Ticks)

10

210

310

410

510

 N
um

be
r

of
 E

ve
nt

s

Pending LArSoft Integration Issues
• Parallelization over ROIs: Implement TBB parallel for

within PeakFitterMrqdt_tool.cc
• Vectorization:
– GCC in stand-alone version:

• Slower than icc in all cases
• Almost no increase in speed with explicit vectorization using SSE

or AVX512
– Issues compiling #pragma simd and #pragma ivdep

simultaneously over a loop using CMake
• Possible solution: compile Marquardt fitter with icc

AVX-512 and link it to LArSoft as a library?
– Encourage experiments and grid to allow selection of

nodes with specific vector extensions

July 16, 2019 S. Berkman 8

Conclusions & Future Work
• GausHitFinder has been vectorized and parallelized:
– Up to 100 times faster with parallelization
– Up to 2 times faster with vectorization

• Levenberg-Marquardt algorithm has been implemented to do
the fitting in the GausHitFinder algorithm instead of ROOT
– Fitter implementation performs well when compared to MKL

• New version of the GausHitFinder integrated into LArSoft:
– 12 times faster than the current implementation on MicroBooNE

overlay events, work ongoing for ICARUS.
– Physics results nearly identical to current LArSoft version.
– Not yet taking advantage of all of the potential vectorization and

parallelization improvements, which are further independent
speed-ups.

• Future directions:
– GPUs: work has started on the CMS side of the SciDAC project and

plan to test similar techniques with liquid argon code.
– Plan to start working with other signal processing algorithms next.
July 16, 2019 S. Berkman 9

