Vectorizing and Parallelizing
the Gaus-Hit Finder

ML 8
< & []
)
A A
S P S C 1 DA
o

Z)
)

%)

& Scientific Discovery through
\\>"\ Advanced Computing
C

WBoONE _

Sophie Berkman
for the SciDAC HEP Reco Group
(G. Cerati, B. Gravelle, A. Hall, B. Norris, M. Wang)

LArSoft Meeting

July 16, 2019 2= Fermilab

July 16, 2019 S. Berkman 1

SciDaC Project: HEP Event Reconstruction

e Study improvements to HEP
event reconstruction using
vectorization and modern
computing architectures

* Liquid Argon:
— Took O(100 s) to process a

LBooNE event (8,256 wires)
* MCCS8 reconstruction
— Improvements necessary for a

larger scale experiment like DUNE
(384,000 wires/ 10 kTon cryostat)

— Focus on vectorizing and
parallelizing low level signal
processing and event
reconstruction

 CMS: vectorize and parallelize
tracking code

UNIVERSITY OF

OREGON

3& Fermilab ()

July 16, 2019 S. Berkman 2

Feasibility study: GausHitFinder

Feasibility study: GausHitFinder

— Charged particles produce pulses on wires. Identify and extract parameters
associated with pulses (position, amplitude, width).

— Wires are independent; can be processed independently

— Few percent to few tens of percent of reconstruction depending on the
experiment

Vectorization and parallelization developments were done within a stand-
alone version of the GausHitFinder developed by M. Wang, G. Cerati, B.
Norris

— Implements the Levenberg-Marquardt algorithm to do the fitting
— ROOT/ Minuit not suitable for parallelization - global memory management

— Stand-alone code is faster than the ROOT version even before vectorization and
parallelization.

— Will discuss results on stand-alone code, and then LArSoft integration
* All results are on overlay neutrino events simulated in MicroBooNE
e Stand alone code complled with icc T Usher

Example Wire Pulses

Pulse Height

Il IIII|IIII|IIII|IIII||III|III

[I{ITI

—1450 1500 1550 1600 1650

T|me

July 16, 2019 S. Berkman 3

Vectorization of Stand-Alone GausHitFinder

* Vectorization challenges:

— Minimization difficult because fits
converge in different numbers of
iterations

— Cannot fit multiple hits at the same
time . 2.5

— Vectorize the most time consuming
loop, but this is not all of the code

* Vectorization Strategies:
— Compiler vectorization: use avx512

— Explicit vectorization on the most time
consuming loops

— Loops determined by profiling the code
— #pragma omp simd, #pragma ivdep
* Speed increases

| KNL SKYLAKE GOLD

1.5

1
0.5 I I
0

b . e s
E)Itﬁ_hil;(‘)";c;aosrtl;?tcl)?]ns.k I7a(l)<g) faster on NO-VEC, SSE2, AVX512, AVX512,
, 0 Y NO PRAGMAS NO PRAGMAS

— Compiler and explicit vectorization: 2 PRAGMAS PRAGMAS
times faster on KNL and Skylake than
with no vectorization

SPEED RELATIVE TO 'NO-VEC, NO PRAGMAS

July 16, 2019 S. Berkman 4

Parallelization of Stand-Alone GausHitFinder

Using OpenMP
1. Parallel for loop over events

2. Parallel region with OMP for + critical
(to synchronize output) over regions
of interest (ROI) on the wires

— Fastest with “dynamic” thread
scheduling

Parallelization challenges:

— Algorithm has a relatively small
amount of work.

— Thread overhead may limit speed up

Speed increases with parallelization:
— KNL: up to 100 times faster
— Skylake: up to 30 times faster

The speed improvements from

parallelization are not yet included in
LArSoft

| Thread Scaling on KNL |

G. Cerati

o
.a .
81 00—
2 L

n |

80

60

40—

i —e— N, Wire=1
L —e— N Event=1
—e— N Event=5

201 ¢
L f N,Event=10
L N,Event=20

II|IIII|III|IIIII

|II II

0 50 100 150

200 250
N;Event x N, Wire

| Thread Scaling on Skylake Gold |

a 35
Q- 93C
32 L
8
Q f—
8 30:
251
20
15[
103_ / —e— N, Wire=1
—e— N, Event=1
L —e— N, Event=5
50 N,,Event=10
5 N,,Event=20
1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1

0 20 40 60

1 | |
80 100 120
N, Event x N, Wire

July 16, 2019 S. Berkman

5

LArSoft Integration

Integrated a version of the stand-alone code with the
Marquardt fitter into LArSoft

— Branch of larreco: feature/cerati_gshf-larsoft

— Marquardt fitting is implemented as a class called MargFitAlg
— Does not depend on any external libraries

New tool “PeakFitterMrqdt_tool.cc” does the fit using the

same Marquardt fitter as implemented in the stand alone
code.

Can call this new tool instead of the default
“PeakFitterGaussian_tool.cc” in the GausHitFinder_module.cc

— Does the fitting in “findPeakParameters” function

None of the current functionality was changed in this branch,
just has the option to use the new fitter

Mike is also using this Levenberg-Marquardt fitter in LArSoft.

LArSoft Validation

Initial validation done on
uboonebuild01.fnal.gov, with overlay
neutrino events in MicroBooNE

Results:

— Hit finder is 12 times faster on average
than the current LArSoft version.

— Physics results are nearly identical.

e Difference in number of hits at 0.02%
level

* 2% of hits with a difference in peak time :
larger than 0.02 ticks B e T T e
DOGS nOt yet Include a” Of the Default Hit Time - Marquardt Hit Time (Ticks)
vectorization and parallelization
Improvements.
— No parallelization

— Uses sse instead of avx512

Validation ongoing for ICARUS

Number of Events

July 16, 2019 S. Berkman 7

Pending LArSoft Integration Issues

* Parallelization over ROIs: Implement TBB parallel for
within PeakFitterMrqdt_tool.cc

* Vectorization:

— GCC in stand-alone version:

* Slower thaniccin all cases

* Almost no increase in speed with explicit vectorization using SSE
or AVX512

— Issues compiling #pragma simd and #pragma ivdep
simultaneously over a loop using CMake
* Possible solution: compile Marquardt fitter with icc
AVX-512 and link it to LArSoft as a library?

— Encourage experiments and grid to allow selection of
nodes with specific vector extensions

July 16, 2019 S. Berkman 8

Conclusions & Future Work

GausHitFinder has been vectorized and parallelized:
— Up to 100 times faster with parallelization
— Up to 2 times faster with vectorization

Levenberg-Marquardt algorithm has been implemented to do
the fitting in the GausHitFinder algorithm instead of ROOT

— Fitter implementation performs well when compared to MKL

New version of the GausHitFinder integrated into LArSoft:

— 12 times faster than the current implementation on MicroBooNE
overlay events, work ongoing for ICARUS.

— Physics results nearly identical to current LArSoft version.

— Not yet taking advantage of all of the potential vectorization and
parallelization improvements, which are further independent
speed-ups.

Future directions:

— GPUs: work has started on the CMS side of the SciDAC project and
plan to test similar techniques with liquid argon code.

— Plan to start working with other signal processing algorithms next.

