SAND-DUNE: Simulations and reconstruction DUNE-doc-13262

SAND: Solenoid for Accurate Neutrino Detection, for DUNE

Status of simulations and analysis

- Summary of performance study for
- KLOE + STT + LAr
- Full simulations and reconstruction to demonstrate performances
- Perspectives in new proposed configuration, KLOE +3DST +...

New

Integration of 3DST, surrounded by tracking devices. Work in progress.

Front

Output: energy in 1cm cubes, and time

Will reuse 3DST software for light yield and digitization.

Details

Kloecal fine structure

Simulations

- Two parallel streams
- GEANT4 + GENIE + dunendggd
- FLUKA (with internal generator) + ROOT
- Same neutrino fluxes from http://home.fnal.gov/ljf26/DUNEFluxes/
- Same STT configuration and LAr meniscus
- In FLUKA: detailed EM Calo geometry+readout

Plots: em-calo hits (black) and readout cell centres (yellow) (integrated over many events)

Results – Muons

FLUKA sim: muon-track reconstruction based on STT hits, assuming a spatial resolution of 0.2 mm on y and x axes and 0.01 mm on z axis (beam axis).

Improvements ongoing

Good resolution on p (~3%) for both targets Good resolution on dip angle ~1.7 mrad

Charge mis-id ~0.02%

Results: - electrons

Generated in STT with GENIE+GEANT4. Very good resolutions, tails due to circular fit approximation to be improved i.e. with Kalman filter.

Results- π^0

Reconstructed CC sample: 4000 events 1 π^0 25% of events 2 π^0 8% of events > 2 π^0 2.5 % of events

> Resolutions: 1 π^0 16% 2 π^0 18%

Reconstruction from EM CALO clusters Dimensions $\Delta x = 20 \text{ cm}$ and $\Delta \phi = 5 \text{ deg}$. Energy smearing $\sigma_E / E \approx 5.7\% / \sqrt{E}(\text{GeV})$ Position from hit barycentre + resolution of the KLOE calorimeter (4.5 mm).

> 2 π^0 sample: π^0 invariant mass, Considering only 4-cluster events

4/9/2019

Results: - Neutrons : efficiency

FLUKA simulation, detailed EM-CAL. Reconstruction uses real calo segmentation+ measured signal attenuation and time delay in fibres. Combined with STT hits as for muons

Global efficiency 64% (17% STT, 55% EM-CAL, 8%overlap) Efficiency > 72% for E_{kin} > 100 MeV

Results: - Neutrons: energy from ToF

4/9/2019

FLUKA simulation. Reconstructed ToF from vertex in Ar to hit in STT or EM-CALO On full spectrum: Beta Entries the neutron kinetic energy can be Early interaction not detected. ToF from fast reconstructed with about 30% secondary (photons) precision for about 23% of the detected neutrons. Situation improves quickly with Many scatterings not energy: 10 detected. Path much On E> 50 MeV 47% of detected longer than straight line neutrons are reconstructed within 30% accuracy Next: try to add calorimetric

MeV

1000

100

10

information

12

Angle reconstruction for QE interactions on H

$\overline{\nu} + p \rightarrow \mu^+ + n$

- first hit (minimum time) of neutron or neutron daughters track
- Smearing of MC vertex position and hit position

Stthit=1 events in stt Stthit=0 events in barrel calorimeter Stthit=2 events in endcap calorimeter

Resolution vs true angle

(Reco-true)/true :
average within 0.5%
sigma ~2%

Full reconstruction –no MC truth

- Interaction Vertex based on STT-hit topology (Step 0)
- Track finding (Global transform method)
- Linear or circle fits to track
- Vertex reco from crossing on two most rigid tracks (Step 1)
- Iteration...
- Matching of tracks in the two views \rightarrow tracks in 3D
- Evaluation of p_{\perp} and dip-angle \rightarrow p estimate
- Ecal hit compatible with tracks → ToF measurement
- $\beta_{4/3/201}\beta$ estimate \rightarrow PiD

On two views

vertex and track finding

• A full realistic event reconstruction based only on detected quantities, avoiding to use MC true information, is under development using FLUKA simulated events

Two-step method: first rough vertex finding, allows for coordinate transform Peaks in φ correspond to tracks Second vertex finding from

track intersection

P reconstruction

For events with only 1 charged track in each view:

Error on total p: p=p_{yz}/cos(λ)

For events with no more than 3 tracks matched in the two views:

v energy reconstruction (preliminary)

80

60

100.*(Enu-EtotRec)/Enu

'All-tracks' energy only

'All-tracks' energy +

Off-track Calo energy

NO MC truth $\sigma/E = 6.6\%$

Low-nu

- GENIE simulation on CH2 and H
- 2 MC samples: "data" and "MC truth"
- Assuming acceptance of 80% and energy resolution 5% to test the unfolding and analysis procedure
- Detector simulation and event reconstruction ongoing

Acceptance for ArCUBE muons: old AC geo Muon acceptance

Acceptance for ArCUBE muons: old AC geo

• Simple muon catcher around AC + layers around coil cured the

Acceptance for AC muons: work in progress (maybe obsolete?)

• New AC dimensions and exit window implemented, analysis in progress

Summary

- KLOE magnet + EM Calo + 3DST +tracker: implemented, running
- KLOE magnet + EM Calo + STT : full simulation + single particle reco
 - Track momentum $\sigma \approx \!\! 3\%$
 - Track angle 1 mrad
 - Neutron efficiency 76%
 - Neutron Energy within 30% for 47% od detected n with E>50 MeV
 - Neutron angle in QECC on H: within 2%
- KLOE magnet + EM Calo + STT : preliminary full event reconstruction
 - PiD and proton/muon/pion mass reco
 - Neutrino energy in CC $\sigma \approx 6\%$
- Acceptance for ArgonCube events: latest configuration under evaluation. Previous one: OK if muon catchers

Backup

Next steps

- Improve details of singe particle reconstruction
- Finalize full event reconstruction
- Apply to random events, check identification and reconstruction
- Optimize LAr meniscus
- Apply to / optimize PRISM-like data taking
- Full background evaluation
- For the moment, apply the single-particle quantities to physics analysis (in the following).
- Details in the forthcoming note

Performances (examples of)

 Good resolution on tracks
 →good efficiency and purity for the kinematic selection of interactions on H

	R_{mH} and $p_{T\perp}^{H}$ cuts		$\ln \lambda^{H}$ cut		
Process	Efficiency	Purity	Efficiency	Purity	
$\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$	93%	86%	90%	92%	
$\bar{\nu}_{\mu}p \rightarrow \mu^{+}p\pi^{-}$	89%	84%	90%	88%	
$\bar{\nu}_{\mu}p \rightarrow \mu^{+}n$	95%	80%			
$\nu_{\mu}p$ CC inclusive	83%	73%			

- Good track and neutron efficiency → flux shape with low-v method for QE and RES events on H. Total statistics (5 years) expected is about 2.4 10⁶ for RES and 800 000 for QE
- Low-v method also on global STT (and Lar) : here deconvolution of MC smeared data sample to recover input neutrino flux from interactions in STT
- Almost identical performances for events in the LAr meniscus and in the STT → direct comparison of events on Ar and H (or C) for nuclear effects assessment

Performances (examples of)

• Charge separation and electron identification $\rightarrow v_e / v_\mu$ and all other species with high statistics (80000 \bar{v}_e events in FHC mode 5 years)

 Very good angular resolution on electron tracks → flux determination from scattering on electrons (rate and shape): The selection efficiency is about 84% with a total background of 5%, composed of QE interactions without reconstructed proton (3%) and NC π⁰ interactions (2%). Can be combined with data from external Lar. STT provides smaller statistics but better systematics

PRISM

• The whole detector can be moved on rails, for a PRISM-like exposure.

- Event rates here for ½ year, in the LAr meniscus, FHC
- v_{μ} CC : 3.1 10⁴ at the largest angle in 5+5 years
- Factor 5 more in STT

Equal I	POTs at each position								
Offset	10^{20} POT	CCInc ν_{μ}	NCInc	CCInc $\bar{\nu}_{\mu}$	CCInc ν_e	El. ν_{μ} -e			
0 m	0.786	$9.4 \cdot 10^{4}$	$3.4 \cdot 10^{4}$	$2.9 \cdot 10^3$	$1.1 \cdot 10^{3}$	8.5			
5 m	0.786	$7.3 \cdot 10^4$	$2.6 \cdot 10^4$	$2.5 \cdot 10^3$	$9.3 \cdot 10^2$	6.3			
10 m	0.786	$3.2 \cdot 10^4$	$1.2\cdot 10^4$	$1.5 \cdot 10^{3}$	$6.1 \cdot 10^{2}$	2.7			
15 m	0.786	$1.4 \cdot 10^{4}$	$5.5 \cdot 10^{3}$	$8.0 \cdot 10^2$	$3.9 \cdot 10^2$	1.3			
20 m	0.786	$7.9\cdot 10^3$	$3.2\cdot 10^3$	$5.2 \cdot 10^2$	$2.5 \cdot 10^2$	0.7			
25 m	0.786	$4.8 \cdot 10^{3}$	$2.0 \cdot 10^3$	$3.4 \cdot 10^{2}$	$1.7 \cdot 10^{2}$	0.4			
30 m	0.786	$3.1 \cdot 10^{3}$	$1.3 \cdot 10^3$	$2.5 \cdot 10^{2}$	$1.2 \cdot 10^{2}$	0.3			
All	5.500	$2.3\cdot 10^5$	$8.4 \cdot 10^{4}$	$8.8 \cdot 10^{3}$	$3.6 \cdot 10^{3}$	20.2			
Half PC	Half POTs on-axis								
Offset	10^{20} POT	CCInc ν_{μ}	NCInc	CCInc $\bar{\nu}_{\mu}$	CCInc ν_e	El. ν_{μ} -e			
0 m	2.750	$3.3 \cdot 10^{5}$	$1.2 \cdot 10^{5}$	$1.0 \cdot 10^{4}$	$4.0 \cdot 10^{3}$	29.6			
5 m	0.458	$4.2 \cdot 10^4$	$1.5 \cdot 10^4$	$1.5 \cdot 10^{3}$	$5.4 \cdot 10^{2}$	3.7			
10 m	0.458	$1.9 \cdot 10^4$	$6.8\cdot 10^3$	$9.0 \cdot 10^2$	$3.6 \cdot 10^{2}$	1.6			
15 m	0.458	$8.5 \cdot 10^3$	$3.2\cdot 10^3$	$4.7 \cdot 10^{2}$	$2.3 \cdot 10^2$	0.7			
20 m	0.458	$4.6 \cdot 10^3$	$1.9\cdot 10^3$	$3.0 \cdot 10^2$	$1.5 \cdot 10^{2}$	0.4			
$25 \mathrm{~m}$	0.458	$2.8 \cdot 10^3$	$1.2 \cdot 10^3$	$2.0 \cdot 10^2$	$9.7 \cdot 10^1$	0.3			
30 m	0.458	$1.8 \cdot 10^3$	$7.7 \cdot 10^2$	$1.4 \cdot 10^2$	$6.8 \cdot 10^1$	0.2			
All	5.500	$4.1 \cdot 10^{5}$	$1.5 \cdot 10^{5}$	$1.3 \cdot 10^{4}$	$5.4 \cdot 10^{3}$	36.5			

 $\sigma \text{ and Nuclear Effects}$ $N_{\rm X}(E_{\rm rec}) = \int_{E_{\nu}} dE_{\nu} \ \Phi(E_{\nu}) \ P_{\rm osc}(E_{\nu}) \ \sigma_{\rm X}(E_{\nu}) \ R_{\rm phys}(E_{\nu}, E_{\rm vis}) \ R_{\rm det}(E_{\rm vis}, E_{\rm rec})$

- Events on Ar, H, CH₂, additional C target within the same detector
- Compare Ar events with free proton kinematics (H)
- Unfolding nuclear effects (R_{phys}) from detector effects (R_{det})
- \rightarrow measure $\sigma_x R_{phys}$
- Lar TPC detector effects (==Far Det) studied by pixelated LAr TPC
- σ_x on Ar using the large statistics from the LAr and HPgTPC detectors

Flux measurements

- Φ (E_v) Measurements
 - Absolute v flux from v e \rightarrow v e elastic
 - Fluxes vs E_v , ratios of v_x/v_y (e, μ , anti) from interactions on Hydrogen
 - the availability of large statistics from a hydrogen target allows precisions far exceeding what is achievable with any nuclear target.
 - v_{μ} on H : 5 10⁵/year
 - $\bar{\nu}_{\mu}$ on H : 8 10⁴/year
 - v_e on H : 8 10³/year

4/9/2019

• v_{μ} e in FHC : 1000/year in STT, possibly combined with measurement from large mass pixelated LAr detector

FHC	ν_{μ}	$\bar{\nu}_{\mu}$	ν_e	$\bar{\nu}_e$	Total
All	675812	31114	9993	1603	718521
Ar	142976	5578	2129	299	150982
С	469686	20431	6922	1050	498089
Н	48714	4446	733	221	54114
RHC	ν_{μ}	$\bar{\nu}_{\mu}$	Ve	$\bar{\nu}_e$	Total
All	105533	242126	4735	3470	355863
Ar	22076	42993	1007	637	66713
C	79985	157064	6922	2265	236893
0	10000	101304	0.766		

Events/ 10²⁰ pot

