Compact STT: Design and Performance

R. Petti

University of South Carolina, Columbia SC, USA

(on behalf of proponent institutions)

DUNE ND Workshop on Magnet Systems September 04, 2019

- ♦ Low-density, high-resolution Straw Tube Tracker gives control of configuration, chemical composition & mass of $\nu(\bar{\nu})$ target(s) like e-experiments
 - Accurate measurement of $\nu(\bar{\nu})$ -Hydrogen interactions from CH₂ & C subtraction and kinematic identification of $\nu(\bar{\nu})$ -H (80-95% purity);
 - Suite of nuclear targets: CH₂, C, Ar, Ca, etc. within SAME detector (same acceptance)
- ♦ Modular design (flexible):
 - Thin passive targets (100% chemical purity) physically separated from active tracker (straws);
 - Tunable target mass & density by varying target thickness targets >95% of STT mass with average density $0.008 \le \rho \le 0.18 \ g/cm^3$;
 - A variety of dedicated thin ($< 0.1X_0$) targets can be installed & replaced during data taking;
 - Allows use of hybrid targets including a 3DST module.
 - ⇒ Find optimal compromise between target mass (statistics) & resolution
 - ⇒ Excellent for quantifying the (anti)neutrino source (beam monitoring)
 & for precision measurements including rare processes

- ♦ 110,000/year $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$ on H <u>selected</u> in STT with $\nu < 0.50$ GeV.
- 155,000/year $\bar{\nu}_{\mu}p \rightarrow \mu^{+}n$ on H selected in STT with $\nu < 0.25$ GeV.
 - \implies Measurement of relative ν_{μ} & $\bar{\nu}_{\mu}$ fluxes to $\sim 1\%$ in one year for $1 < E_{\nu} < 4$ GeV

Comparing Ar and H measurements within SAME detector imposes stringent constraints on the nuclear smearing in Ar

- 623,000/year ν_{μ} -H CC inclusive <u>selected</u> in STT after subtracting 7% C bkgnd;
- ♦ 384,000/year $\bar{\nu}_{\mu}$ -H CC inclusive <u>selected</u> in STT after subtracting 16% C bkgnd.

OPTIMIZED DESIGN OF STT MODULES

- ♦ Default CH₂ and C (graphite) filling uniformly KLOE magnetic volume (\sim 43m³):
 - 78 STT modules with CH $_2$ target & radiator: FV (20 cm from all edges) mass \sim 4.7 t CH $_2$;
 - 7 STT modules with C (graphite) target with similar X_0 thickness: FV mass \sim 504 kg C ;
 - ullet 231,834 straws: FV mass \sim 262 (163) kg with 20 (12) μm walls: 4.8% (3.0%) of STT mass;
 - Tracking modules without targets upstream and downstream of FV.
 - \Longrightarrow Average density ~ 0.18 g/cm 3 & complete STT equivalent to $\sim 1.4~X_0$
- → Possible to install different materials: Ca, Fe, Pb, etc. + upstream LAr meniscus.

- ★ Excellent angular, momentum & timing resolution:
 - Low density design for accurate tracking;
 - $\delta heta \sim$ 1-2 mrad, $\delta p/p \sim$ 3-5% with default density $\rho \sim 0.18$ g/cm 3 ;
 - ullet Time resolution $\sim 1ns$, can resolve beam structure & withstand high rates (max. drift \sim 50 ns).
- \bullet e^+/e^- & other particle ID over the entire tracking volume:
 - Electron ID with Transition Radiation (TR) and $dE/dx \Longrightarrow \pi$ rejection $\sim 10^{-3}$;
 - 4π detection of π^0 from γ conversions ($\sim 50\%$) within the STT volume;
 - $p/\pi/K$ ID with dE/dx and range.
- **♦** Accurate in-situ calibrations of momentum & angle reconstruction:
 - Momentum scale from $K_0 \to \pi^+\pi^-$ in STT volume (264,000 in FHC);
 - p reconstruction and identification, vertex, etc. from $\Lambda \to p\pi^-$ in STT volume (293,000 in FHC);
 - e^{\pm} reconstruction and identification from $\gamma \to e^+e^-$ in STT volume (8 × 10⁶ in FHC).
 - \implies Momentum scale uncertainty < 0.2% (NOMAD)

See docdb # 13262 and Paola's talk

Radiator design optimized with simulations of Transition Radiation (TR) TR performance (electron ID) in STT better than NOMAD at low energies

3D ENGINEERING MODEL

- lacktriangle Complete 3D CAD design of STT modules with straws, radiator, and CH₂ target:
 - Self-supporting & withstanding internal pulls by straws;
 - Minimize frame mass to avoid degradation of ECAL performance;
 - Radiator & target easily mounted/unmounted without affecting the mechanical stability;
 - Realistic implementation including all elements: straws, coatings, wires, end-plugs, screws, etc.
 - Main frame material C-composite with Young's modulus 175 GPa.
 - \Longrightarrow On average, frames add only $\sim 0.1~X_0$ of material \perp to beam direction

Roberto Petti USC

- lacktriangle Complete 3D CAD design of STT modules with straws, radiator, and CH₂ target:
 - Self-supporting & withstanding internal pulls by straws;
 - Minimize frame mass to avoid degradation of ECAL performance;
 - Radiator & target easily mounted/unmounted without affecting the mechanical stability;
 - Realistic implementation including all elements: straws, coatings, wires, end-plugs, screws, etc.
 - Main frame material C-composite with Young's modulus 175 GPa.
 - \implies On average, frames add only $\sim 0.1~X_0$ of material \perp to beam direction
- **♦** Detailed Finite Element (FE) analysis of deformations:
 - Assume worst case: central STT module 400 cm × 338 cm:
 - Internal gas overpressure (1.9 atm) & XXYY straw assembly substantially reduce tension on frames;
 - Wire tension 50g + straw pre-tension of 200g: total 250g/straw;
 - Forces applied by each straw: uniformly distributed across frame elements.
 - \implies Maximal deflections in central point of frames $\ll 1$ cm

☐ Y Displacement

Nodes:1015002 Elements:603291 Type: Y Displacement Unit: mm 7/29/2019, 1.30 PM 6.621 Max Max: 6.621 mm

☐ Z Displacement

Detailed Finite Element Analysis of deformations

- ◆ STT technology used by existing/planned COMET, PANDA, Mu2e, NA62, SHiP, etc.
 - \implies Benefit from common R&D and prototyping during pre-production phase
- Existing straw production line by GTU group at JINR Dubna for COMET:
 - COMET based upon same 4 XXYY layer design as updated STT modules;
 - Ultrasonic welding technology allows thin straw walls: existing prototypes 12 μ m walls, 2m long;
 - ullet Can operate overpressure (COMET in vacuum), similar conditions as in STT ~ 1.9 atm;
 - Each production line can produce 100-150 straws/day including quality control.
- ♦ Possible to produce complete STT with 3 production sites replicating existing COMET technology, assuming up to 3 straw production lines per site (\sim one year).

Straw production line with ultrasonic welding operated by the GTU group at JINR Dubna for the COMET experiment

- ◆ Large groups with infrastructure & extensive experience in the construction of various straw detectors (ATLAS TRT, COMPASS, Mu2e, NA62, SHiP, COMET, etc.):
 - Joint Institure for Nuclear Reserach (JINR), Dubna, Russia (International Laboratory);
 - Georgian Technical University (GTU), Tbilisi, Georgia;
 - Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia (HEP Laboratory).
- ♦ Brookhaven National Laboratory (BNL) for electronic readout.
- ◆ University of South Carolina, USA.
- Belarusian State University, Minsk, Belarus.
- ◆ Interest from Indian institutions: Indian Institute of Technology Guwahati (IITG); Jawaharlal Nehru University, New Delhi; University of Lucknow; University of Jammu; Banaras Hindu University.
- ♦ Substantial interest from different physics communities in the non-oscillation physics program enabled by the STT within the KLOE magnet (docdb # 13262)
 - ⇒ A rapidly growing community expanding the DUNE scientific base

ONGOING R&D ACTIVITIES

- ◆ STT prototype to be built & tested in October-November 2019 at JINR:
 - Small scale with 4 XXYY layers of straws built with ultrasonic welding at JINR;
 - Front-end electronic readout with VMM3(a) ASICS from BNL;
 - BNL boards and DAQ currently being tested at CERN (JINR, BNL);
 - Mechanical assembly of XXYY straws;
 - Validate straw performance with VMM3(a) readout electronics;
 - Identify requirements for further developments of STT readout.
- ◆ Extensive tests of straw properties by GTU group at JINR for COMET:
 - Tension of straw walls & wires vs. operating conditions;
 - Detector stability over time, straw relaxation;
 - Overpressure operation and straw deformations;
 - Optimization of materials & welding process.
- → Test-beam exposures of prototypes at CERN, possibly with very-low-energy beams.

Roberto Petti USC

330 mm

VMM3 (and VMM3a) front-end readout boards being tested (JINR, BNL)

- Relative ν_{μ} flux vs. E_{ν} from exclusive $\nu_{\mu}p \to \mu^{-}p\pi^{+}$ on Hydrogen: < 1% $\nu < 0.5$ GeV flattens cross-sections reducing uncertainties on E_{ν} dependence.
- Relative $\bar{\nu}_{\mu}$ flux vs. E_{ν} from exclusive $\bar{\nu}_{\mu}p \to \mu^{+}n$ QE on Hydrogen: < 1% ν < 0.25 GeV: uncertainties comparable to relative ν_{μ} flux from $\nu_{\mu}p \to \mu^{-}p\pi^{+}$ on H.
- lacktriangle Absolute $ar
 u_\mu$ flux from QE $ar
 u_\mu p o \mu^+ n$ on H with $Q^2 \sim 0$ (neutron eta decay)
- ♦ Absolute ν_{μ} flux from $\nu e^- \rightarrow \nu e^-$ elastic scattering: $\sim 2\%$ \Longrightarrow Complementary to measurement in LAr TPC with small systematics
- ♦ Ratio of ν_e/ν_μ AND $\bar{\nu}_e/\bar{\nu}_\mu$ vs. E_ν from CH₂ (& H) targets ⇒ Excellent e^\pm charge measurement and e^\pm identification (\sim 90k $\bar{\nu}_e$ CC in FHC)
- ♦ Determination of parent $\mu/\pi/K$ distributions from $\nu(\bar{\nu})$ -H (& CH₂) at low- ν \Longrightarrow Direct in-situ measurement for flux extrapolation to FD
- ♦ Stability of beam profile vs. E_{ν} and (x,y) over fiducial area 298 cm \times 360 cm. \Longrightarrow Total fiducial mass of 5.5 t uniformly filling the magnetic volume

1,046 (938) $\nu e^-/\text{year}$ selected in FHC (RHC) beam from CH₂, C, Ar targets & straw mass

• Excellent electron ID (TR $\sim 10^3~\pi$ rejection), angular ($\sim 1.5~\text{mrad}$) and E_e resolutions:

Detector	Signal	ν_e QE	NC π^0	$\delta_{ m stat}$	$\delta_{ m syst}$	$\delta_{ m tot}$
STT FHC 5y on-axis	5,814	3%	2%	1.3%	${\sim}1\%$	$\sim 1.7\%$
LAr FHC + DUNE-Prism (50%)	11,229	11%	3%	0.9%	$\sim \! 1.5\%$	$\sim 1.7\%$

⇒ Synergy between LAr (syst. dominated) & STT (stat. dominated) measurements

- igspace 37,000/day ν_{μ} CC FHC & 14,000/day $\bar{\nu}_{\mu}$ CC RHC on CH₂, C, and straws in FV.
- Uniform filling of KLOE allows beam monitoring of (E_{ν},r) up to $r\sim$ 250 cm.
 - ⇒ On-axis monitoring of beam stability & focusing in real time

Roberto Petti USC

$$N_{\rm X}(E_{\rm rec}) = \int_{E_{\nu}} dE_{\nu} \Phi(E_{\nu}) P_{\rm osc}(E_{\nu}) \sigma_{\rm X}(E_{\nu}) R_{\rm phys}(E_{\nu}, E_{\rm vis}) R_{\rm det}(E_{\rm vis}, E_{\rm rec})$$

$$\sim 1\% \text{ in H} F_{i}(Q^{2}) R_{\rm phys} \equiv I$$

- ♦ Hydrogen only target offering missing information to reduce systematics:
 - Constraining the nuclear smearing $\sigma_X R_{\rm phys}$ from direct comparison of Ar and H targets;
 - Calibration of the (anti)neutrino energy scale.
- ◆ Providing necessary redundancy against MC/model & unexpected discrepancies:
 - Ar detectors alone (even ideal) cannot resolve $\sigma_X R_{\rm phys} R_{\rm det}$ & related systematics;
 - DUNE-Prism alone sensitive to (beam) model & tuning to resolve off-axis discrepancies.
 - ⇒ Synergy between DUNE-Prism and Hydrogen measurements in STT to resolve systematics from beam modeling & nuclear smearing

Selection of $\nu_{\mu}p \to \mu^{-}p\pi^{+}$ and $\bar{\nu}_{\mu}p \to \mu^{+}p\pi^{-}$ processes

H. Duyang, B. Guo, S. Mishra, and RP, arXiv:1809.08752v2 [hep-ph]

	ν_{μ} -H CC			$ar{ u}_{\mu} ext{-H CC}$						
Process	$\mu^- p \pi^+$	$\mu^- p \pi^+ X$	$\mu^- n \pi^+ \pi^+ X$	Inclusive	$\mu^+ p \pi^-$	$\mu^+ n \pi^0$	$\mu^+ n$	$\mu^+ p \pi^- X$	$\mu^+ n\pi\pi X$	Inclusive
Eff. ε	96%	89%	75%	93%	94%	84%	75%	85%	82%	80%
Purity	95%	93%	70%	93%	95%	84%	80%	94%	84%	84%

TABLE I. Efficiency ε and purity for the kinematic selection of H interactions from the CH₂ plastic target using the likelihood ratio $\ln \lambda^{\rm H} + \ln \lambda^{\rm H}_{\rm IN}$ or $\ln \lambda^{\rm H}_4 + \ln \lambda^{\rm H}_{\rm IN}$. For the $\mu^+ n$ QE topologies $\ln \lambda^{\rm H}_{\rm QE}$ is used instead. The cuts applied for each channel are chosen to maximize the sensitivity defined as $S/\sqrt{S+B}$, where S is the H signal and B the C background. The CC inclusive samples are obtained from the combination of the corresponding exclusive channels.

ν_{μ} -H CC, $\varepsilon \equiv 75\%$			$\bar{\nu}_{\mu}$ -H CC, $\varepsilon \equiv 75\%$							
$\left[\text{Process} \left \mu^{-} p \pi^{+} \right \mu^{-} p \pi^{+} X \left \mu^{-} n \pi^{+} \pi^{+} X \right \text{Inclusive} \left \mu^{+} p \pi^{-} \right \mu^{+} n \pi^{0} \left \mu^{+} n \left \mu^{+} p \pi^{-} X \right \mu^{+} n \pi \pi X \right \right] \right]$					Inclusive					
Purity	99%	99%	70%	98%	99%	90%	80%	98%	90%	86%

TABLE II. Purity achieved with the kinematic selection of H interactions from the CH₂ plastic target using a cut on the likelihood ratio $\ln \lambda^{\rm H}_{\rm IN} + \ln \lambda^{\rm H}_{\rm IN}$ or $\ln \lambda^{\rm H}_{\rm 4} + \ln \lambda^{\rm H}_{\rm IN}$ resulting in the fixed H signal efficiency ε specified. For the $\mu^+ n$ QE topologies $\ln \lambda^{\rm H}_{\rm QE}$ is used instead. For illustration purpose, the value of the efficiency is chosen as the lowest among the ones listed in Tab. I for individual topologies. The CC inclusive samples are obtained from the combination of the corresponding exclusive channels.

- ◆ Consider different design options to understand the physics potential of possible hybrid detectors including 3DST & STT.
- Need to study benefits vs. limitations of various options for the main ND physics measurements.
- ◆ Useful to use common simulation framework & benchmark developed in docdb # 13262

 \implies See talk by Paola

Backup slides

CC process	CH ₂ target	H target	CH ₂ selected	C bkgnd	H selected
$\nu_{\mu}p \to \mu^{-}p\pi^{+}$	5,615,000	2,453,000	2,305,000	115,000	2,190,000
$\nu_{\mu}p \to \mu^{-}p\pi^{+}X$	$11,\!444,\!000$	955,000	877,000	61,000	816,000
$\nu_{\mu}p \to \mu^- n\pi^+\pi^+ X$	3,533,000	183,000	158,000	48,000	110,000
ν_{μ} CC inclusive	34,900,000	3,591,000	3,340,000	224,000	3,116,000
$\bar{\nu}_{\mu}p \to \mu^{+}n$	4,450,000	1,688,000	1,274,000	255,000	1,019,000
$ \bar{\nu}_{\mu}p \to \mu^+ p\pi^-$	827,000	372,000	342,000	17,000	$325{,}000$
$\bar{\nu}_{\mu}p \to \mu^{+}n\pi^{0}$	791,000	366,000	295,000	48,000	247,000
$\bar{\nu}_{\mu}p \to \mu^{+}p\pi^{-}X$	$2,\!270,\!000$	176,000	153,000	9,000	144,000
$\bar{\nu}_{\mu}p \to \mu^{+}n\pi\pi X$	2,324,000	280,000	220,000	35,000	185,000
$\bar{\nu}_{\mu}$ CC inclusive	13,000,000	2,882,000	2,284,000	364,000	1,920,000

TABLE III. Number of events expected in the selection of all the various processes on H with the default low energy (anti)neutrino beams available at the LBNF [1, 2], assuming 5+5 years of data taking with the neutrino and antineutrino beams. The first two columns (CH₂ and H targets) refer to the initial statistics, while the last three include all selection cuts described in this paper (Sec. III and Tab. I). For the CH₂ and C targets the numbers refer to the given final state topologies originated from either p or n interactions. The fifth column shows the total residual C background to be subtracted from the corresponding CH₂ selected samples. We use a ratio $M_C/M_{C/CH_2} = 0.12$ to measure the C backgrounds from the graphite targets. See the text for details.

$$N_H(\vec{x}) \equiv N_{CH_2}(\vec{x}) - N_C(\vec{x}) \times \frac{M_{C/CH_2}}{M_C}$$

Data-driven subtraction of small backgrounds (model-independent)