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CONTROL OF (ANTI)NEUTRINO TARGETS

4 Low-density, high-resolution Straw Tube Tracker gives control of configuration,
chemical composition & mass of v(v) target(s) like e-experiments

e Accurate measurement of v(v)-Hydrogen interactions
from CHy & C subtraction and kinematic identification of v(v)-H (80-95% purity);

e Suite of nuclear targets: CHs, C, Ar, Ca, etc. within SAME detector (same acceptance)

4 Modular design (flexible):

e Thin passive targets (100% chemical purity) physically separated from active tracker (straws);

e Tunable target mass & density by varying target thickness — targets >95% of STT mass —

with average density 0.008 < p < 0.18 g/cm?3;
e A variety of dedicated thin (< 0.1X,) targets can be installed & replaced during data taking;

o Allows use of hybrid targets including a 3DST module.
= Find optimal compromise between target mass (statistics) & resolution

= Excellent for quantifying the (anti)neutrino source (beam monitoring)
& for precision measurements including rare processes
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4 110,000/year v,p — v prt on H selected in STT with v < 0.50 GeV.
4 155,000/year v,p — p"n on H selected in STT with v < 0.25 GeV.

= Measurement of relative v,, & v, fluxes to ~ 1% in one year for 1 < E,, < 4 GeV
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4 623,000/year v,-H CC inclusive selected in STT after subtracting 7% C bkgnd;
4 384,000/year v,-H CC inclusive selected in STT after subtracting 16% C bkgnd.
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CHy & C DESIGNED TO HAVE SAME ACCEPTANCE

4 Default CH, and C (graphite) filling uniformly KLOE magnetic volume (~43m?):
e 78 STT modules with CHs target & radiator: FV (20 cm from all edges) mass ~ | 4.7 t CH,

e 7 STT modules with C (graphite) target with similar Xy thickness: FV mass ~ | 504 kg C |

7

o 231,834 straws: FV mass ~ 262 (163) kg with 20 (12) um walls: 4.8% (3.0%) of STT mass;

e Tracking modules without targets upstream and downstream of FV.

— Average density ~ 0.18 g/cm® & complete STT equivalent to ~ 1.4 X,

4 Possible to install different materials: Ca, Fe, Pb, etc. + upstream LAr meniscus.

Detailed
GDML geometry
available
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COMBINED TRACKING & PARTICLE 1D

4 Excellent angular, momentum & timing resolution:
e Low density design for accurate tracking;
o 00 ~ 1-2 mrad, 6p/p ~ 3-5% with default density p ~ 0.18 g/cm?;
e Time resolution ~ 1ns, can resolve beam structure & withstand high rates (max. drift ~ 50 ns).

4 ¢ /e= & other particle ID over the entire tracking volume:

e Electron ID with Transition Radiation (TR) and dE/dx = 7 rejection ~ 1073;
e 4 detection of ¥ from ~y conversions (~ 50%) within the STT volume;
e p/m/K ID with dE/dx and range.

4 Accurate in-situ calibrations of momentum & angle reconstruction:

e Momentum scale from Ko — wtx~ in STT volume (264,000 in FHC);

e p reconstruction and identification, vertex, etc. from A — pr™ in STT volume (293,000 in FHC);

e et reconstruction and identification from v — ete™ in STT volume (8 x 10% in FHC).

—> Momentum scale uncertainty < 0.2% (NOMAD)

See docdb # 13262 and Paola’s talk
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N=150 foils, straw pressure 1.9 atm
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Radiator design optimized with simulations of Transition Radiation (TR)
TR performance (electron ID) in STT better than NOMAD at low energies
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3D ENGINEERING MODEL

4+ Complete 3D CAD design of STT modules with straws, radiator, and CH, target:

Self-supporting & withstanding internal pulls by straws;

e Minimize frame mass to avoid degradation of ECAL performance;
e Radiator & target easily mounted/unmounted without affecting the mechanical stability;

e Realistic implementation including all elements: straws, coatings, wires, end-plugs, screws, etc.

e Main frame material C-composite with Young's modulus 175 GPa.

= On average, frames add only ~ 0.1 Xy of material 1. to beam direction
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3D ENGINEERING MODEL & FE ANALYSIS

4+ Complete 3D CAD design of STT modules with straws, radiator, and CH, target:

Self-supporting & withstanding internal pulls by straws;

e Minimize frame mass to avoid degradation of ECAL performance;

e Radiator & target easily mounted/unmounted without affecting the mechanical stability;

e Realistic implementation including all elements: straws, coatings, wires, end-plugs, screws, etc.
e Main frame material C-composite with Young's modulus 175 GPa.

= On average, frames add only ~ 0.1 X, of material L. to beam direction

4 Detailed Finite Element (FE) analysis of deformations:

e Assume worst case: central STT module 400 cm x 338 cm;

e Wire tension 50g + straw pre-tension of 200g: total 250g/straw;
Forces applied by each straw: uniformly distributed across frame elements.

—> Maximal deflections in central point of frames < 1 cm

Internal gas overpressure (1.9 atm) & XXYY straw assembly substantially reduce tension on frames;
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Detailed Finite Element Analysis of deformations
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SIMILAR REQUIREMENTS AS ONGOING PROJECTS

4 STT technology used by existing/planned COMET, PANDA, MuZ2e, NA62, SHIP, etc.
— Benefit from common R&D and prototyping during pre-production phase

4 Existing straw production line by GTU group at JINR Dubna for COMET:

e COMET based upon same 4 XXYY layer design as updated STT modules;

e Ultrasonic welding technology allows thin straw walls: existing prototypes 12 um walls, 2m long;

e Can operate overpressure (COMET in vacuum), similar conditions as in STT ~ 1.9atm;

e Each production line can produce 100-150 straws/day including quality control.

4 Possible to produce complete STT with 3 production sites replicating existing COMET
technology, assuming up to 3 straw production lines per site (~ one year).

chl il it [1station

.........
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Straw production line with ultrasonic welding operated by the GTU group
at JINR Dubna for the COMET experiment
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COMPACT STT FOR SAND-DUNE

4 Large groups with infrastructure & extensive experience in the construction of various
straw detectors (ATLAS TRT, COMPASS, MuZ2e, NA62, SHiP, COMET, etc.):

e Joint Institure for Nuclear Reserach (JINR), Dubna, Russia (International Laboratory);
e Georgian Technical University (GTU), Thilisi, Georgia;
e Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia (HEP Laboratory).

4 Brookhaven National Laboratory (BNL) for electronic readout.
4 University of South Carolina, USA.
4 Belarusian State University, Minsk, Belarus.

4 Interest from Indian institutions:
Indian Institute of Technology Guwahati (IITG); Jawaharlal Nehru University, New
Delhi; University of Lucknow; University of Jammu; Banaras Hindu University.

4 Substantial interest from different physics communities in the non-oscillation physics
program enabled by the STT within the KLOE magnet (docdb # 13262)

—> A rapidly growing community expanding the DUNE scientific base
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ONGOING R&D ACTIVITIES

4 STT prototype to be built & tested in October-November 2019 at JINR:
e Small scale with 4 XXYY layers of straws built with ultrasonic welding at JINR;
e Front-end electronic readout with VMM3(a) ASICS from BNL;
e BNL boards and DAQ currently being tested at CERN (JINR, BNL);
e Mechanical assembly of XXYY straws;
o Validate straw performance with VMM3(a) readout electronics;
Identify requirements for further developments of STT readout.

4 Extensive tests of straw properties by GTU group at JINR for COMET:
e Tension of straw walls & wires vs. operating conditions;
e Detector stability over time, straw relaxation;
e Overpressure operation and straw deformations;
e Optimization of materials & welding process.

4 Test-beam exposures of prototypes at CERN, possibly with very-low-energy beams.
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VMM3 (and VMM3a) front-end readout boards being tested (JINR, BNL)
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PRECISION

ON-AXIS BEAM MONITORING

4 Relative v, flux vs. E, from exclusive v,p — p~prn™ on Hydrogen: < 1%

v < 0.5 GeV

flattens cross-sections reducing uncertainties on E,, dependence.

4 Relative v, flux vs. E, from exclusive v,p — pu*n QE on Hydrogen: < 1%

v < 0.25 GeV|:

uncertainties comparable to relative v, flux from v,p — p~pr™ on H.

4+ Absolute v, flux from QE v,p — p'n on H with Q* ~ 0 (neutron 3 decay)

4 Absolute v, flux from ve™ — ve™ elastic scattering: ~ 2%
= Complementary to measurement in LAr TPC with small systematics

4 Ratio of v./v, AND v, /v, vs. E, from CHy (& H) targets

= Excellen

t e* charge measurement and e* identification (~ 90k v, CC in FHC)

4 Determination of parent i/ /K distributions from v(v)-H (& CH,) at low-v
= Direct in-situ measurement for flux extrapolation to FD

4 Stability of beam profile vs. E,, and (x,y) over fiducial area 298 cm x 360 cm.
— Total fiducial mass of 5.5 t uniformly filling the magnetic volume
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4+ Excellent electron ID (TR ~ 10° 7 rejection), angular (~ 1.5 mrad) and E, resolutions:

Detector Signal | ve QE NC 70 | Ostat | Osyst Otot
STT FHC by on-axis 5,814 3% 2% | 1.3% | ~1% | ~1.7%
LAr FHC + DUNE-Prism (50%) | 11,229 11% 3% | 09% | ~1.5% | ~ 1.7%

—> Synergy between LAr (syst. dominated) & STT (stat. dominated) measurements

Roberto Petti
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4 37,000/day v, CC FHC & 14,000/day v,, CC RHC on CH,, C, and straws in FV.
4 Uniform filling of KLOE allows beam monitoring of (E,,r) up to r ~ 250 cm.

= On-axis monitoring of beam stability & focusing in real time
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CONSTRAINING NUCLEAR SMEARING

NX(Erec> :/ dEI/ (I)(EI/) POSC<EI/) JX(EV) Rphys(EuaEvis) Rdet(EviSJErec)
Ey

y Voo

~1% in H Fz(Qz) Rphys =1

4 Hydrogen only target offering missing information to reduce systematics:

e Constraining the nuclear smearing ox Rpnys from direct comparison of Ar and H targets;
e Calibration of the (anti)neutrino energy scale.

4 Providing necessary redundancy against MC/model & unexpected discrepancies:

e Ar detectors alone (even ideal) cannot resolve o x RphysRdet & related systematics;
o DUNE-Prism alone sensitive to (beam) model & tuning to resolve off-axis discrepancies.

= Synergy between DUNE-Prism and Hydrogen measurements in STT
to resolve systematics from beam modeling & nuclear smearing

Roberto Petti
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In A"4in }»H,N cut

Selection of v,p — u~pr™ and v,p — ptTpr— processes

H. Duyang, B. Guo, S. Mishra, and RP, arXiv:1809.08752v2 [hep-ph]
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v,-H CC 7,-H CC
Process|pu~prt|u~prt X |p~natnt X |Inclusive | ppr~ | pTna® | ptn|ptpr= X | ptnaor X [Inclusive
Eff. € 96% 89% 5% 93% 94% | 84% |75%| 85% 82% 80%
Purity | 95% 93% 70% 93% 95% | 84% |80%| 94% 84% 84%

TABLE I. Efficiency € and purity for the kinematic selection of H interactions from the CHs plastic
target using the likelihood ratio In AH+In )\IHN or In A\l +1In )\FN. For the u™n QE topologies In )\gE
is used instead. The cuts applied for each channel are chosen to maximize the sensitivity defined
as S/v/S + B, where S is the H signal and B the C background. The CC inclusive samples are
obtained from the combination of the corresponding exclusive channels.

v,-H CC, e = 75% v,-H CC, € = 75%
Process|pu~prt|u=prt X |p nrtnt X|Inclusive|ptpr— | pwtnal | ptn|ptpr~ X | ptnrr X |Inclusive
Purity | 99% 99% 70% 98% 99% | 90% |80%| 98% 90% 86%

TABLE II. Purity achieved with the kinematic selection of H interactions from the CHy plastic
target using a cut on the likelihood ratio In A\H+1In A or In Ail4+In Al resulting in the fixed H signal
efficiency e specified. For the u™n QE topologies In )\gE is used instead. For illustration purpose,
the value of the efficiency is chosen as the lowest among the ones listed in Tab. I for individual

topologies. The CC inclusive samples are obtained from the combination of the corresponding
exclusive channels.

Roberto Petti
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STUDY/EVALUATE HYBRID CONFIGURATIONS 07

4 Consider different design options to
understand the physics potential of
possible hybrid detectors including
3DST & STT.

4 Need to study benefits vs. limitations
of various options for the main ND
physics measurements.

4 Useful to use common simulation
framework & benchmark developed in
docdb # 13262

— See talk by Paola
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CC process CHs target | H target | CHy selected | C bkgnd | H selected
vup — popmt 5,615,000| 2,453,000 2,305,000 115,000f 2,190,000
vup — - prt X 11,444,000 955,000 877,000 61,000 816,000
vup — pnrtrt X 3,533,000 183,000 158,000 48,000 110,000
v, CC inclusive 34,900,000 3,591,000 3,340,000 224,000{ 3,116,000
Dup — ptn 4,450,000 1,688,000 1,274,000 255,000 1,019,000
Dup — ppm 827,000 372,000 342,000 17,000 325,000
vup — phnmd 791,000 366,000 295,000 48,000 247,000
Dup — ppr X 2,270,000 176,000 153,000 9,000 144,000
Dup — pinrnX 2,324,000 280,000 220,000 35,000 185,000
v, CC inclusive 13,000,000 2,882,000 2,284,000 364,000 1,920,000

TABLE III. Number of events expected in the selection of all the various processes on H with
the default low energy (anti)neutrino beams available at the LBNF [1, 2], assuming 5+5 years of
data taking with the neutrino and antineutrino beams. The first two columns (CHs and H targets)
refer to the initial statistics, while the last three include all selection cuts described in this paper
(Sec. IIT and Tab. I). For the CHs and C targets the numbers refer to the given final state topologies
originated from either p or n interactions. The fifth column shows the total residual C background
to be subtracted from the corresponding CHs selected samples. We use a ratio M¢ /Mg JCH, = 0.12
to measure the C backgrounds from the graphite targets. See the text for details.
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Data-driven subtraction of small backgrounds (model-independent)
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