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Reconstruction steps: Vertex, Clustering, Tracking, Particle Momentum, Particle ID,
Event Energy, Event ID

Variables need to be reconstructed:

Vertex > Regression ,

Particle Momentum = Regression Use de§p learning to SOIV.e both
Particle ID = Classification regression and classification
Event Energy = Regression problems in reconstruction
Event ID =& Classification

A combination of regression CNN and classification CNN can solve above
reconstruction tasks

This talk = focus on Energy and Vertex reconstruction with regression CNN



e Convolutional Neural Networks (CNNs) with raw pixel inputs have demonstrated success
in Classification problems such as event identification (CVN identifier in NOvVA and
DUNE, image segmentation/prong identifier at MicroBooNE, vertices plane identifier at
MINERVA)

e Developing Regression CNN based method for energy and vertex reconstruction at DUNE

e Extend regression CNN to solve other reconstruction in DUNE can form a full
reconstruction chain

Fully Connected Layer Locally Connected Layer

Example: 200x200 image
40K hidden units
m) ~2B parameters!!!

CNNs take raw pixel inputs,
using all detector information

Example: 200x200image  WIth acceptable computing cost
40K hidden units

Filter size: 10x10

4M parameters

Note: This parameterization is good
when input image is registered (e.g., »
face recogpnition). Ranzatolld

- Spatial correlation is local
- Waste of resources + we have not enough
training samples anyway..

Traditional artificial neural network Convolutional neural network 3

Ranznlo“



Events
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Classification Convolutional Neural Network has been implemented at DUNE for
event identification (CVN)

Identify v,,CC, v,CC and NC events
Performance is better than DUNE CDR assumptions

v, signal

v, background
v, background

v background

v, beam background
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PHYSICAL REVIEW D 99, 012011 (2019)
Plane U Plane V Plane Z
Improved energy reconstruc::i‘::‘n railnnNegvv;:-kvsvith regression convolutional ¢ ¢ ¢
S nversiy of Caimeto, rtne, 32857 Calfornic, G54 3xConv2d 3xConv2d 3xConv2d
® (Received 15 November 2018; published 24 January 2019) Max Pool Max Pool Max Pool
In neurino experiments, neutrino energy roconstnuction is crucial because neutrino oscillations and
the detector response and :r:emal cs of (;fn:leu:dn(.;op:;ecfey l\t&'e :'o(:)o Se a regres: don :Zx:::lul ional neurz ¢ ¢ ¢
ne|w9rk (CNN) based method to neconstm?l electron neuIm-m el'lergy and eleclr.on energy in the NOvA . . .
neutrino expenmem..\_Ne dem?nslra-wmlha‘l with raw df{ecl({r pixel inputs, a regression CD{N can reconstruct IIIC eptl on Inceptlon Inceptlon
. . Max Pool Max Pool Max Pool
b
Architecture modified from UCI’s NOvA I T T
Regression CNN energy estimator (pierre Baldi, nception P S
Jianming Bian, Lars Hertel, Lingge Li, PhysRevD.99.012011) Max Pool Max Pool Max Pool
Loss: LW, (x ) = |fw(X) Vi | Optimize energy resolution "L
Axpyitin) = y; and reduce impacts from Concat
. i=1 outliers.
One linear output unit 1
Inception

No regularization applied

Use hyperparameter optimization software
SHERPA developed by UCI’s Lars Hertel’ et.
al. (GitHub https://github.com/sherpa-ai/sherpa)

Average Pool
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Pixel Map inputs for v,

Rel Tick

Use ADC counts and TDC units from Wire instead of using the reconstructed hits

e Three input pixel maps: U-T, V-T, and Z-T Pixel map size has been chosen to contain 90% of hits

on average

e (oarsed TDC ticks to make same physical dimensions of the x- and y-axis of the pixel map
e Pixel map size: 280x400 (actual covered space: 1680 ticks x 400 wires) — 6 ticks are merged
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Applied the trained model to the official Nue MC samples

Fiducial volume is defined with the true vertex

Fit with Gaussian within (-1,1)

Sigma of Kinematic-based method: 13.1% and RegCNN: 7.2%

Events (arbitrary units)
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Kinematics Energy reconstructed by

E() = S + ERS)

Using MC truth to find correction factors to
visible lepton and hadron energy

CNN Energy is reconstructed by
regression CNN



Mean and RMS of energy resolution

RegCNN has smaller RMS and over-estimates for low energies
Bias is due of low statistics in low energy in the training samples
To reduce the bias, flat energy spectrum is best option

At this stage, re-weighted individual events to give the impression of flat
energy spectrum samples

DUNE Preliminary

DUNE v, Appearance
Normal Ordering
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Redefined the loss function

LW, {(x; 1)V = Z VLW, X, y)
% \/_

 Similar energy resolution: 7.2% = 7.3%

Reduced bias in the low energy region
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DUNE Preliminary
T

* RegCNN shows good performance for ; e ‘

different interaction modes E

* Sigma of Gaussian fit: | s | E
* RegCNN: 5.2% (QE), 8.3% (RES), v, CC RES ——

—— CNN Energy

9.4% (DIS)

* Kinematic-based: 9.5% (QE), 13.1%
(RES), 15.2% (DIS)

v, CC DIS — Kinematic Energy

—— CNN Energy
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~ Rel Tick
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We start with a low resolution pixel map to include overall topology

Three input pixel maps: U-T, V-T, and Z-T

Pixel map size has been chosen to contain 90% of hits on average

Coarse TDC ticks and wires

Pixel map size: 280x400, (actual covered space: 6720 ticks x 2800 wires) — Merged 7 wires and
24 ticks
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* As a first step, performed the reconstruction for events with contained tracks
* RMS of Kinematic-based method: 19.0 % and RegCNN: 12.5%

* Moving to study events with exiting muon track.

DUNE Preliminary
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Rel. Tick

Use Pixel Map (280x
Find Vertex on Wire/Tick

for each plane

250 A

200 A

150 +

100 A

50

» Second stage: reconstruct the 3-D vertex with the smaller pixel map

Crop image

* First stage: propose the vertex on each plane = crop each view and make smaller pixel map

Make Small Pixel Map

® TrueVvtx
O Reco. Vtx
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Reconstruct Vertex on

* The pixel map size (280x400) is too large for vertex training, to improve resolution we construct 2-stage architecture
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Plane U

3x Conv2D
Max Pool

Inception
Max Pool

Plane V

3x Conv2D
Max Pool

v

Inception
Max Pool

Concat

Inception
Avg Pool

Fully
Connected

Vertices
Wire/Tick

Plane Z

3x Conv2D
Max Pool

Inception
Max Pool

3x Conv2D
Max Pool

Inception
Avg Pool

3x Conv2D
Max Pool

Inception
Avg Pool

Flatten

Concat

Fully
Connected

3x Conv2D
Max Pool

Inception
Avg Pool

PixelMap
Positions




Entries (a.u.)

* Trained on statistical independent Nue CC samples and tested
on two simulation versions with results consistent results

* Promising RMS: 0.98 cm (X), 1.98 cm (Y) and 1.67 cm (Z)
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e Developed regression CNN models to reconstruct neutrino energy and vertex for DUNE
e Show promising results in the energy and vertex resolution

e For Nue CC: 13.1% = 7.3 %, for Numu CC:19.0% - 12.5 % (for contained events)

e With weighted training, energy scale shows small dependence on true neutrino energy,

investigating effects from interaction modelling

e Working on systematic uncertainties and validation at ProtoDUNE

Thank you! -



