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Reconstruction steps: Vertex, Clustering, Tracking, Particle  Momentum, Particle ID, 
Event Energy, Event ID
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Vertex à Regression 
Particle  Momentum à Regression
Particle ID à Classification
Event Energy à Regression
Event ID à Classification

A combination of regression CNN and classification CNN can solve above 
reconstruction tasks
This talk à focus on Energy and Vertex reconstruction with regression CNN

Use deep learning to solve both 
regression and classification 
problems in reconstruction

Variables need to be reconstructed:

Introduction



Convolutional Neural Network
● Convolutional Neural Networks (CNNs) with raw pixel inputs  have demonstrated success 

in Classification problems such as event identification (CVN identifier in NOvA and 
DUNE, image segmentation/prong identifier at MicroBooNE, vertices plane identifier at 
MINERvA)

● Developing Regression CNN based method for energy and vertex  reconstruction at DUNE
● Extend regression CNN to solve other reconstruction in DUNE can form a full 

reconstruction chain
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CNNs take raw pixel inputs, 
using all detector information 
with acceptable computing cost

Traditional artificial neural network Convolutional neural network
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Classification CNN identifier in DUNE
• Classification Convolutional Neural Network has been implemented at DUNE for 

event identification (CVN)
• Identify nµCC, neCC and NC events
• Performance is better than DUNE CDR assumptions



Regression CNN Architecture for energy
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● Architecture modified from UCI’s NOvA
Regression CNN energy estimator (Pierre Baldi, 
Jianming Bian, Lars Hertel, Lingge Li, PhysRevD.99.012011) 

● Loss:

● One linear output unit

● No regularization applied

● Use hyperparameter optimization software 
SHERPA developed by UCI’s Lars Hertel’ et. 
al. (GitHub https://github.com/sherpa-ai/sherpa)

Optimize energy resolution 
and reduce impacts from 
outliers.



Pixel Map inputs for ne
● Use ADC counts and TDC units from Wire instead of using the reconstructed hits 
● Three input pixel maps: U-T, V-T, and Z-T Pixel map size has been chosen to contain 90% of hits 

on average
● Coarsed TDC ticks to make same physical dimensions of the x- and y-axis of the pixel map
● Pixel map size: 280x400 (actual covered space: 1680 ticks x 400 wires) → 6 ticks are merged 
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NueCC Energy Resolution

• Applied the trained model to the official Nue MC samples

• Fiducial volume is defined with the true vertex

• Fit with Gaussian within (-1,1) 

• Sigma of Kinematic-based method: 13.1% and RegCNN: 7.2%
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Kinematics Energy reconstructed by
𝐸 𝜈 = 𝐸$%&'() + 𝐸+,-'()

Using MC truth to find correction factors to 
visible lepton and hadron energy

CNN Energy is reconstructed by 
regression CNN



Energy Resolution Vs. True Energy
• Mean and RMS of energy resolution

• RegCNN has smaller RMS and over-estimates for low energies 

• Bias is due of low statistics in low energy in the training samples

• To reduce the bias, flat energy spectrum is best option

• At this stage, re-weighted individual events to give the impression of flat 
energy spectrum samples
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Weighted Training and Result

• Redefined the loss function

• Similar energy resolution: 7.2% à 7.3%

• Reduced bias in the low energy region
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Energy Resolution with Different Interaction Modes

• RegCNN shows good performance for 
different interaction modes

• Sigma of Gaussian fit:
• RegCNN: 5.2% (QE), 8.3% (RES), 

9.4% (DIS)
• Kinematic-based: 9.5% (QE), 13.1% 

(RES), 15.2% (DIS)
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Low-resolution Pixel Map inputs for nµ Energy
● We start with a low resolution pixel map to include overall topology
● Three input pixel maps: U-T, V-T, and Z-T
● Pixel map size has been chosen to contain 90% of hits on average
● Coarse TDC ticks and wires
● Pixel map size: 280x400, (actual covered space: 6720 ticks x 2800 wires) → Merged 7 wires and 

24 ticks
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Numu CC Energy Resolution
• As a first step, performed the reconstruction for events with contained tracks

• RMS of Kinematic-based method: 19.0 % and RegCNN: 12.5%

• Moving to study events with exiting muon track.
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Two stage training for Vertex
• The pixel map size (280x400) is too large for vertex training, to improve resolution we construct 2-stage architecture

• First stage: propose the vertex on each plane à crop each view and make smaller pixel map

• Second stage: reconstruct the 3-D vertex with the smaller pixel map
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Use	Pixel	Map	(280x600)
Find	Vertex	on	Wire/Tick

for	each	plane

Crop	image
Make	Small	Pixel	Map

(24x40)

Reconstruct	Vertex	on	
X/Y/Z

Color is charge



Vertex Regression CNN Architectures
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Reconstructed 3-D Vertex

• Trained on statistical independent Nue CC samples and tested 
on two simulation versions with results consistent results

• Promising RMS: 0.98 cm (X), 1.98 cm (Y) and 1.67 cm (Z)
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Summary
● Developed regression CNN models to reconstruct neutrino energy and vertex for DUNE

● Show promising results in the energy and vertex resolution

● For Nue CC: 13.1% à 7.3 %, for Numu CC:19.0% à 12.5 % (for contained events)

● With weighted training, energy scale shows small dependence on true neutrino energy, 

investigating effects from interaction modelling 

● Working on systematic uncertainties and validation at ProtoDUNE
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