

HPgTPC Reference Design

Alysia (a-lee-sha) Marino, University of Colorado Boulder DUNE ND Workshop at DESY October 22, 2019

HPgTPC Concept

•5m wide, 5 m diameter cylinder

 ALICE upgrading their inner and outerreadout chambers (ROCs) during the long shutdown, old chambers available now

 Build a copy of the ALICE detector using the available ROCs, but need to build new systems including:

- Field cage & HV feedthrough
- Pressure vessel
- Central ROC (x2)

More details on ALICE TPC:

NIM Paper: Nucl. Instr. A, **622** (2010) pg 316–367 TDR: http://cds.cern.ch/record/451098?ln=en

High Pressure Argon

- For a 90%Ar-10%CH₄ mixture at 10 atmospheres
 - ▶97% of interactions are on Argon
 - ▶1 ton of Argon in fiducial volume
 - $\sigma_x \sim 250~\mu m,~\sigma_{pT}/p_T = 0.7\%~1-10~GeV/c,~1-2\%~from~0.1~to~1~GeV/c,~\sigma_{dEdx} \sim 5\%$
 - ►~1.4x10⁶ V_µ CC interactions per year
 - ~500,000 NC interactions per year

Argon Gas

- Drift distance is up to 2.5 m
- ALICE operated (mostly) with Ne/CO₂/N₂ mixture at 1 atm
 - With an E-field of 400 V/cm ALICE drift velocity is 2.65 cm/µs
- For a 90%Ar-10%CH₄ gas mixture
 - ▶ Drift velocity is ~3 cm/µs with a 400 V/cm E-field at 10 atm
 - ► (In ArgonCube more like 0.4 cm/µs)

ALICE Field Cage Containment

Surrounded by gas-tight grounded
 Outer Containment vessel which acts as a ground

Within this is a ~15 cm CO₂-filled insulating gap, gas continuously circulated.

 Field cage housed in a gas-tight field cage vessel

- 2 cm thick Nomex structure
- Field strips are inside
- Outside has more coarsely segmented guard rings

ALICE-style Field Cage

ALICE Field Cage

- 100 kV operating voltage in 2 drift regions
- ~5m diameter + ~5m long
- No inner field cage for us
- Consider options
 - ALICE design: aluminized mylar strips
- Also need a Central Electrode (which in ALICE was an aluminized mylar foil)

sPHENIX Field-Cage

From T. Hemmick's talk at CERN TPC mini workshop

https://indico.cern.ch/event/827540/

Field Shaping Stripes

- Small pitch makes useful drift space closer to cage.
- ▶ ½ voltage on the back-side protection stripe
- Stripe-to-stripe ~1250 V in air (100 V required in service)
- High Voltage Pulse Withstanding (HVPW) resistors.
 - Survives surges of 15 kV
 - Nominal running at 50 V
- ▶ Redundant chains @ 1.06 Watts/chain (0.6 mW per resistor).
- Circuit card covers full circumference (over 5 meters long)
 - Incomplete ring (magnet quench consideration)

DUNE ND TPC would have a much larger diameter though

Field Cage Structure

- The octadecagonal outer field cage has 18 rod per side:
 - ▶ 1 resistor rod per side provided a chain of resistors.
 - ▶ 6 laser calibration rods
 - ▶ 1 rod to provide the HV to the central cathode (spare on the other side)
 - ▶ 10 rods were gas outlets (inlets on inner field cage)
- Resistor rods were water cooled

Readout Chamber Testing

 Spare Inner Readout Chamber (IROC) at Fermilab

Spare Outer Readout Chamber
 (OROC) recently shipped to Royal
 Holloway

•Plan tests of gas mixtures & gas gain

Central Readout Chambers

- Need a set of chambers for each side
- ~84 cm radius
- These must be designed from scratch
- Do we need a gating grid? Ion clearing time ~1/3 sec, so perhaps not.
- In ALICE IROC and OROC wire plane spacings were a bit different
- Anode voltages were 1570 V (1350 V) on OROCs (IROCs). Likely to be lower in DUNE ND

CROC Infill Ideas

Gas + Water System

- Gas system
 - Need Argon+CH₄ system for inside field cage
 - Perhaps also a CO₂ recirculation system to voltage buffer region between containment vessel and pressure vessel
- Water System
 - Cooling water for resistor chains?
 - Cooling water for electronics
 - In ALICE this ran below atmospheric pressure

Detector Support Structures

- Will need to fabricate new support structures.
- Can start with the ALICE design to hold the readout chambers
- But maybe need some modifications to accommodate central readout chambers
- Need an articulated arm to insert chambers into structure. (Could borrow an arm at BNL.)

Electronics + DAQ

Table 4.2: Readout pads.

	Pad size [mm ²]	Number of rows	Number of pads
Inner chamber (84.1 $< r < 132.1$ cm)	4×7.5	64	5732
Outer chamber (134.6 $< r <$ 198.6 cm)	6 × 10	64	6038
Outer chamber (198.6 < r < 246.6 cm)	6 × 15	32	4072
TPC total		160	570 312

ALICE has 570k channels. New central chambers could add ~100k more channels to this

- Signal inverted and faster in GAr compared to LAr
- FNAL designing adapter board to host v1 LArPix, to be tested in GOAT test stand
- If successful, then make branched version: modified LArPix -> FastArPix (faster clock, inverted signals)
- Some interest expressed in DAQ, but no active work yet

Light Collection and Gas Mixtures

- Ar gas mixtures fluoresce in the near-infrared. Could provide a useful timestamp
- Light is related to choice of gas mixture
- ALICE did not have a light collection system, so if we want to use this light, a light collection system must be designed from scratch (and likely needs to be incorporated into field cage structure as well)

Calibration and Monitoring

- Need detailed maps of internal and external B-field
- Monitor temperature, gas composition, drift velocity, ...
- For calibration, can start from ALICE design, or start fresh
- ALICE design:
 - ▶ laser calibration system
 - radioactive krypton calibration
 - constant monitoring of temperature and gas composition

sPHENIX Laser Calibration

From T. Hemmick's talk

Laser Calibration Overview

PURPOSE: Calibration System

- Determine drift velocity throughout TPC vol.
- Determine electric field distortions
- Determine precise alignment of field cage w.r.t. endcap and magnetic field

STRATEGY

- Shine diffuse laser light onto central membrane to liberate clusters of charge
- Shoot laser beams into TPC volume to mimic straight particle tracks
- Compare straight tracks to displaced/distorted tracks
 - Beam ON vs OFF (space charge effect)
 - B-Field ON vs OFF (ExB effect)

- Charge from the central membrane travels the full drift distance and reveals the absolute integrated drift velocity
- A single sweeping laser beam allows for a continuous sampling of the drift velocity over a quadrant of the TPC volume
- The integrated drift time serves as a hard constraint for the point by point determination of the drift velocity (using system of linear equations)

Pattern of Al dots (low work function →release of e-'s)

 Unlike ALICE, accesses TPC from the sides, not via the support structure

Other Calibration Ideas

<u>Cc</u>

- Can also bounce light off of central electrode (MicroBooNE had a movable mirror)
- X-ray gun (ALICE studying this for run 3)
- External micromegas tracker
 - Could be useful between LAr and ECAL

MICROMEGAS TRACKER FOR TPC MONITORING

Concept:

- Cylindrical Micromegas chamber on the TPC to provide a good precision point to monitor the TPC tracking
- This would help the correction of all types of distortions (IBF, drift velocity, ExB ...) since it's an independent detector
- Will cover the full drift length
- Minimal dead zones
- Relatively cheap with one sector, low X0

TPC Mini Workshop - 11/07/2019

Page 3

From M.
Vandenbroucke's sPHENIX TPC monitoring talk at Mini workshop

R&D and Prototyping Needs

- Specific high priority R&D items:
 - ▶ Test breakdown voltage of planned gas mixture
 - Light production tests
 - Readout electronics
- Other prototyping
 - Field cage
 - Central readout chambers
 - Calibration system
 - Light collection
 - Integration testing

Summary

- Many large components and systems will need to be engineered and fabricated.
- We will hear more about many of these systems and test stands in the next few talks.
- We welcome new groups that might be interested in collaborating on these systems.
 - ~Weekly Tuesday 10 AM Central / 5 PM Central Europe MPD meetings
 - Mailing list: dune-nd-gastpc@listserv.fnal.gov (Can request to join via "DUNE At Work" page.)