

3DST software towards 3DST-S/K

Guang Yang
On behalf of the 3DST-KLOE working group

10/23/19 DESY workshop 1 / 19

Outline

- 3DST software flow
- KLOE software flow
- Plan for a unified group

10/23/19 DESY workshop 2 / 19

Flow of 3DST software

- Geometry
 - independent → DUNENDGGD
- Neutrino flux generation
 - consistent with LBNF → G4LBNF
- Neutrino interaction generation
 - consistent with LBL → GENIE
- Energy deposition of final state particles
 - consistent with LBL → edep-sim
- Electronics simulation independent tool
- Reconstruction independent tool
- Analyses independent tools

Geometry Description

- We set up a basic 3DST concept in DUNE ND system: 3DST surrounded by TPC, ECAL and magnet
- Generated with DUNENDGGD: https://github.com/gyang9/dunendggd
- Layer structure: active volume → component volume → sub-detector → detector → detector hall → Rock world

Stony Brook University Neutrino flux generation

- One of the main tasks for 3DST is to do the beam monitoring.
 Therefore, we will have some self-generated neutrino flux samples with variations of the beam conditions.
- Some of these are available from the samples that used for the beam uncertainty evaluation for the LBL, but some are not.
- To generate the shifted spectrum, we will need to generate beam simulation from the geant level, which means g4lbnf will be used.
- A tool existing created initially for PRISM can help us on some of the tasks: https://github.com/ luketpickering/DUNEPrismTools/

```
i...° ig combined_Sep1.root
   🛊 ... 🧰 ND_nu_ppfx;1
     ND_nu_WL_p1;1
       ND nu HC p1;1
       ND nu DPR p1;1
     ND_nu_TargetDensity_p1;1
     ND_nu_BeamSigma_p1;1
     ND_nu_BeamOffsetX_p1;1
       ND_nu_BeamTheta_p1;1
       ND_nu_BeamThetaPhi_p1;1
     ND_nu_HC_m1;1
       ND_nu_TargetDensity_m1;1
       ND nu BeamSigma m1;1
      ND_nu_BeamOffsetX_m1;1
       ND_nu_Hom1_XShift;1
     ND nu Horn1 YShift;1
      ND_nu_Hom2_XShift;1
      ND_nu_Hom2_YShift;1
     ND_nu_Horn3_XShift;1
        ND_nu_Hom3_YShift;1
       ND_nu_Hom1only_XShift;1
     ND_nu_Hom1only_YShift;1
     ND_nu_Horn1And2_1mm_ShiftShift;1
     ND nu Hom1And2 1mm TiltShift;1
      ND_nu_Horn1And2_2.5mm_TiltShift;1
```


Steps:

- 1. dk2nu generation: dk2nu is a ntuple tree containing hadron decay and neutrino information, with beam parameter set we need.
- 2. following plots: extract flux from each dk2nu beam parameter setup
- 3. Combining all those variations
- 4. Demonstrate the usefulness of 3DST with our studies

Neutrino interaction

(showing an old geometry)

- GENIE (v2_12):
 - whichever version used for the LBL should be used here.
 - running on fermi grid, software consistent with LBL

- Edep-sim:
 - GEANT4 based. Usually set all volumes to be active in order to do detailed final state particle studies.
 - running on Fermi grid, consistent with LBL
- You can also run it locally: https://github.com/ClarkMcGrew/edep-sim

CC pi+ in TPC

CC pi0 in 3DST

Electronics reposnses:

Conversion chain: edep → photon captured in fiber → light attenuation → MPPC response

- Input edep-sim and output :
 - analysis tree containing final state particle high-level information
 - three 2D readout maps with electronics response applied
- In a sub-location of a package: https://github.com/gyang9/DUNE3dstTools/tree/master/src/elecSim

Reconstruction

- Developing a new reconstruction tool dedicated for 3DST and superFGD by Clark McGrew and Sergey Martynenko
- Functioning packages:
 - Read the input file containing fiber hit information;
 - Create 3D Hits from fiber hits;
 - Adjust charge for 3D Hits;
 - Cluster 3D Hits (DB Scan);
 - Define hits order inside each cluster (Minimum Spanning Tree);
 - Split clusters into Track-Like objects (find vertices);
- In development:
 - Track fit;
 - Shower search;
 - Other?

Reconstruction

- Work is being done by Sergey Martynenko at SBU
- Sergey's conclusion at this point:
 - Test reconstruction techniques as a set of separate root scripts:
 - 3D hits are created and clustered;
 - Clusters are split into track-like objects;
 - First look at the effectiveness of pattern recognition algorithms:
 - Hit finding works well with crosstalk(small amount of Ghost Hits);
 - Charge Adjustment works with crosstalk;
 - Clustering and track splitting works well with crosstalk, but quantitatively tested only without crosstalk
 - Temporary code is on GitHub:
 - https://github.com/rennney/CubeRecon
 - Future:
 - Understand True information in MC with crosstalk to quantify clustering properly;
 - Define efficiency for complex events;
 - Continue working on Track fitting and Shower search algorithms

Analysis

 A package has been created compiling all current analysis tools: https://github.com/gyang9/DUNE3dstTools

Analysis

 A package has been created compiling all current analysis tools: https://github.com/gyang9/DUNE3dstTools

NuModel	 Neutrino on CH and Ar interaction tuning with GENIE and NUWRO
beamMonitoring	CLIVIL CITO INOVINO
elecSim	 Beam monitoring sensitivity to various beam
■ fluxSTV	condition changes
■ nBKG	 Electronics Simulation
reco	 Single transverse variable for flux constriant
CMakeLists.txt	 Neutron background study to obtain pure neutron sample on the space of arm and time
	 Reconstruction from 3 2D maps

Flow of KLOE (from Matteo)

- Aim:
 - evaluate (KLOE + 3DST + STT) performances
 - compare them with (KLOE + STT only) ones
- Ingredients:
 - Flux: Optimized 3-Horn Design (<u>https://home.fnal.gov/~ljf26/DUNEFluxes/</u>)
 - Geometry: based on https://github.com/gyang9/dunendggd
 - Neutrino Event Generator: GENIE
 - Energy Deposition: Edep-sim (<u>https://github.com/ClarkMcGrew/edep-sim</u>)
 - Digitization, Reconstruction and Analysis: independent tools (https://baltig.infn.it/dune/kloe-simu)

10/23/19 DESY workshop 15 / 19

Flow of KLOE: Geometry (from Matteo)

 Implementation of a recipe from KLOE Collaboration to reproduce measured time and energy resolution of EM calorimeter

Implementation of STT tracker around 3DST: on going

10/23/19 DESY workshop 16 / 19

Flow of KLOE: Digitization, Reconstruction & Analysis (from Matteo)

• Digitization:

- Calorimeter: energy deposit → photons → attenuation → photo-electrons
 → time and ADC signal
- STT: smearing of hit position
- Reconstruction:
 - STT:
 - Track ID using MC truth info
 - Track Fit with a circle or using GENFIT
 - Calo:
 - Cluster reco using MC truth info
- Analysis:
 - Momentum measurement from STT track Fit
 - Energy measurement from EM Calo Cluster
 - Particle ID using MC truth

10/23/19 DESY workshop 17 / 19

Detector hall and Geometry

- Detector hall is ready (written by 3DST group with DUNENDGGD)
- 3DST + TPC inside KLOE

10/23/19 DESY workshop 18 / 19

Summary and plans

- The 3DST and KLOE software flow has been built and used for a while → robust.
- 3DST group is working with KLOE group to form a single group in order to maximize our capability.
 - Two geometry options:
 - 3DST + TPC + KLOE → contact persons: Davide and Guang
 - 3DST + STT + KLOE → contact persons: Matteo and Lea
 - We will have a consistent geometry, event generation and Geant4 tool.
 - All low level samples will be generated in a consistent way then input into higher level analysis tools.

10/23/19 DESY workshop 19 / 19