

Coherent pion analysis with garsoft: status report

October 22, 2019 Leo Bellantoni DUNE ND Workshop @ DESY

Towards a CDR

- Doing a complete analysis done with a full reconstruction & simulation will be a good contribution to the CDR
- Provides a perspective on what upgrades and bug fixes are need for GArSoft, and with what priorities
- It will also be our first worked example of background suppression from interactions in the ECAL and overlay activity
- · Use of CC coherent π^+ production to constrain the flux has been discussed. (Actually, it might be more interesting in 3DST because 12 C is isoscalar; so $\sigma(\nu) = \sigma(\overline{\nu})$ for $\theta_{\mu} \cong 0$)

Towards a CDR

- "Data" is a set of $\sim 22 \times 10^6$ GENIE 2.12.10
- Corresponds to about 11 shifts of data at 1.2 MW and 100% uptime
- Nov 2017 optimized flux, 4 flavors of v, FHC
- "Strawman_9" ECAL geometry (80 layers of 2mm Cu, 5mm polystyrene)
- Major missing components at this time:
 - Overlay from other activity in the 10µsec spill
 - Reliable quantities to use for track & vertex quality cuts
 - Tagging of proton stub-/non- tracks near the vertex
 - Matching of MCTrue particles to detector activity is rudimentary
 - So is the dE/dx calculation
 - Modeling of TPC pad/electronics response, wire gain, noise, non-uniform B field not in the simulation...

About coherent π^{\pm} production

Typical selection criteria:

- . Veto detector activity near vertex other than μ and π
- . $|t| = (q p_{\pi})^2$ must ≤ 0.1 GeV²
- PID for proton veto

Detector backgrounds:

- Vertices from ECAL activity
- $\cdot \quad \gamma \to e^+ \, e^-$

Physics backgrounds:

- Single π^{+} (possibly through a resonance)
- CCQE producing $\mu^- p$;

Signal Event in HPgTPC

Require a 2 track opposite charge vertex

Effectively, a vertex activity cut

$$\gamma \rightarrow e^+ e^-$$

- Normally, suppress with m(ee) < 15 MeV or some such
- That folds in the reconstruction efficiency of narrow V's (It isn't that great yet)
- However signal does not have low P(tracks)
- Remove tracks & vertices with tracks with $P \le 150 \text{ MeV}$
- Could go back and investigate m(ee) < 15 MeV cut later.

Background definitions

• ECAL: The primary vertex is in the ECAL, but the reconstructed vertex is in the fiducial.

detBkg: The PV is not inside the ECAL, and the reconstructed vertex is
 in the fiducial. The reconstructed fiducial is more than
 15 cm from the MC true vertex.

phyBkg: The vertex is in the fiducial and matches the MC true vertex.
 The GENIE interaction type corresponds to a resonant or DIS process.

• isCCQE: The vertex is in the fiducial and matches the MC true vertex.

The GENIE interaction type corresponds to a CCQE process.

After the Ptrk>150MeV cut

|t| "data": after Ptrk cut

Forward angle cut

- The large mass of ECAL gives a high rate of charged particles entering the gas which interact to create kinks or δ rays
- At this stage in (a) cuts in the sample and (b) the level of reconstruction code development, many of these reconstruct as 2 track neutral vertices
- $\sum \vec{P}_{track}$ for this background points in any direction
- But because we have a fully reconstructed mode, $\sum \vec{P}_{track}$ for the signal points in the direction of the neutrino beam

Forward angle cut

- Require angle between $\sum \vec{P}_{track}$ & $\hat{d}_{BEAMLINE} > acos(0.995)$
- Will need to think of a different cut for other signals

After the Forward angle cut

dE/dx to kill CC QE-like

100% truncated mean from default GENIE
70% truncated mean gave bizzare plots because of tracking issues
Haven't had a chance to investigate further
Tracking is improved since then
(later) put sector boundary corrections in

After the dE/dx cut

|t| "data": after dE/dx cut

Next steps / Conclusion

- On ~3 ½ days of data, have 135 \pm 18_{STAT} of CC coherent π^+ visible in |t| plot
- Need to address the overlay background next
- 40 × overlays makes the computing 40 × more interesting
- More garsoft upgrades coming
- Should try a harder channel too!

Extra slides

- Level 1
 - · Level 2
 - Level 3

Looking in ECAL

Extrapolated tracks into the ECAL for 2 reasons

1) Fraction of events can we get timing info from ECAL

(before P > 150 MeV cut & extrapolation optimization)

Looking in ECAL

Extrapolated tracks into the ECAL for 2 reasons

2) To what level can we tag μ by looking for MIP in ECAL

(before P > 150 MeV cut & extrapolation optimization)

Looking in ECAL

Extrapolated tracks into the ECAL for 2 reasons

2) To what level can we tag μ by looking for MIP in ECAL

A background event with vertex activity

Other activity or noise that does not belong on a track neither modeled nor tagged yet; expect to be able to see ~5MeV excesses

A background event with a π^+

A background event with a p

