Alternate design for DUNE Near Detector

Andrea Bersani

Magnet summary

- → Must host a 5.27 m dia., 5 m long TPC + 60 cm thick calorimeter
 - pressure vessel design from BARC
- \frown Must host a 60 cm thick 4π calorimeter
- Must be as thin as possible along the particle path
 - no material between calorimeter and HPArTPC
- → Must provide 0.5 T ± 20% on the TPC
- Must minimise stray field along the particle path
- Must be movable
 - total wight w/o possible magnet iron: 400 500 metric tons

Double Dipole (DDDND)

- The original Genova group idea was a set of racetrack coils to be installed on the sides of the detector making a double dipole: the stray field is used on the detector
- → Good for
 - no material in front of the detector
 - small coils
- → Bad for
 - a lot of superconductor
 - hardly compatible with a so long pressure vessel

Solenoid with Partial Yoke (SPY@DND)

- Solenoid with a "window" in the yoke
 - closing the magnetic circuit where iron does not affect particles
- → Good for
 - reducing stray field
 - reducing stored energy
 - having uniform material budget
- → Bad for
 - heavier
 - ~ 10cm of aluminium along particles path (outside the calorimeter)

Magnet features

→ Field on TPC: 0.51 T ± 12%

→ Stored energy: 44 MJ

Current density: 32 A/mm2

Possible cable: 20 x 11 mm2

Total length: ~12.7 km

Current: 7040 A

→ Inductance: 1.8 H

Magnetic calculations made on1/8 3D model (Ansys Maxwell)

Field overview

- Max field in iron: 2.1 T
- Max field on cable: 0.9 T
- Force on end caps: 100 t
- Torce on yoke segments: 120 t
- → Yoke mass: 520 t
- End caps mass: 370 t (possibly this can be reduced)

Coils features

- 4 identical single layer coils
- 1500 x 20 mm2 section
- ~ ~ 3660 mm radius
- Can be built independently and assembled and integrated in the experimental hall
- Total width (along particles path):
 ~8000 mm
- Total height: 8800 mm (without wheels)

Stray field

→ 0.04 T at 5 m from the magnet centre along the particle path – higher on sides

Field on TPC

- \bigcirc 0.51 T ± 12% on the whole TPC
- → 0.51 T ± 8% on ~90% of the TPC
- Requirements on radial field?
- Turther optimisation is useful?
- Field on calorimeter?

Possible suggestion for the TPC vessel

- Based on Alan's suggestion
- Reinforcing the vessel ends to reduce the size
- → Ideally, flat ends with I-beams
 - → IPE 750 based actually non standard
- To be evaluated if this structure can host the calorimeter
- Design is very preliminary and not yet satisfactory
- Indeed, the advantage could be great

Preliminary analysis

- Maximum stress exceeds 300 MPa
 - in fact, in few spots
- Weak optimisation has been performed
- Possibly a slightly non flat vessel end is the best compromise
- Length reduction can be ~ 3 m
- Compatible with but not needed by SPY@DND

Possible evolution of DDDND

- With shorter vessel, DDDND solves part of the issues
- Less coils
- Less stray field
- More compact design
- ... anyhow, I would recommend SPY@DND

Further steps

- SPY@DND validation by the collaboration is needed
- Magneto-mechanical design
 - of forces on coil with misalignments and displacement
- Detailed mechanical design of coil, coil former and vessel
 - minimisation of material
 - optimisation of volumes
 - optimisation of parts for installation in experimental hall
 - integration of vacuum chamber in iron yoke
- Iron yoke detailed design
 - support structure
 - moving platform
 - rices and supplies integration

