Overview of the DUNE Near Detector's Multi-Purpose Detector

Jennifer Raaf 6th DUNE Near Detector Workshop @ DESY October 21-23, 2019

- Downstream tracker with gaseous argon target (MPD)
- 3. LAr and GAr systems can move to off-axis fluxes (DUNE PRISM)
- 4. On-axis flux monitor with neutron detection capability (3DST-S/KLOE)

The Near Detector Suite

MPD Basic Considerations

- Magnetic spectrometer for LAr detector, consisting of a highpressure gaseous TPC + ECAL + muon tagger
 - Acceptance (covers high energy forward-going muons exiting the LAr)
 - Minimize material between LAr and MPD
- Flavor-specific measurements by tagging lepton/sign
 - Distinguish neutrinos from anti-neutrinos → measure the wrong-sign component of the (anti)neutrino beam
- Observe neutrino-argon interactions with:
 - Sign-selection, magnetic spectrometry
 - Full 4π coverage
 - Very low tracking thresholds
 - Minimal secondary interactions

Allows disentangling secondary interactions and detector response in LAr

- Powerful tool in transferring measurements from near to far detector
 - Same target nucleus, more capable detector
 - Similar acceptance as far detector

MPD as a spectrometer

- Measure particles exiting the LArTPC
 - Mostly forward-going muons
 - Measure momentum of high-energy muons by curvature in B field
 - Measure sign of charged particles
 - Allows event-by-event distinction of neutrinos from antineutrinos
 - Direct measurement of wrong-sign component of (anti)neutrino beam

MPD as a target

- Independent sample of neutrino interactions in the gas TPC
 - Same target (argon), same beam as LAr
 - Significantly lower thresholds
 - Understand neutrino interactions on argon in detail, improve models at both near and far detector, reduce uncertainties
 - Flat acceptance over full angular range
 - Mirrors far detector acceptance

MPD Event Rates

FHC (neutrino mode)

Event category	Number of events per ton-year of argon
$\nu_{\mu} CC$ total	1.4 x 10 ⁶
Anti- ν_{μ} CC total	526k
v_e CC total	20k
Anti-v _e CC total	4.8k
ν_{μ} NC total	476k
Anti- ν_{μ} NC total	22k
ν_e NC total	4.4k
Anti- ν_e NC total	1k

6 2019 October 21 J. L. Raaf | DUNE MPD | 6th Near Detector Workshop @ DESY

🗱 Fermilab 🕬

MPD Concept

- Fully active low-density tracker with surrounding EM calorimeter and muon tagger
- Open-geometry superconducting magnet
 - 0.5 T central field
 - Design in progress
 - Alternate designs also under consideration

MPD Magnet: Reference Design

- Superconducting 3-coil Helmholtz system with 2 superconducting bucking coils
 - Central field 0.5 T
 - Inner radius 3.5m
- Requirements:
 - Must have large acceptance for particles exiting LAr
 - Must minimize magnet mass

Basic magnetic, cryostat, and structural designs are complete.

MPD Magnet: Alternate Designs

- Alternate magnet designs
 under investigation
 - Solenoid w/partial return yoke
- More discussion Wednesday

Preliminary design inspired by CALICE, with scintillator tiles and strips. Optimization in progress

Surrounds the TPC to:

- Provide fast timing t₀ for reconstruction in the gas TPC
- Measure energy and direction of EM showers
 - Tag/reject neutral pions & photons as backgrounds to v_e
 - Tag/reject external backgrounds
- Measure energetic neutrons

Pressure Vessel

- Pressure vessel design optimization is underway
- So far, have achieved significant reduction in thickness of pressure vessel walls (~0.4 X₀, with AI alloy and structural ribs)

🛠 Fermilab 🕬

High-Pressure Gaseous Argon TPC

- For a reasonable neutrino sample size, would like ~1-ton fiducial mass
 - But also need to keep the TPC to a reasonable size
 → pressurize the gas
 - At 10 atm pressure: 1.5M CC v_{μ} events per ton-year

- Assuming we can operate at 10 atm, the ALICE TPC is about the right size...
 - Geometrically, 5m diameter & 5m length gives good coverage of particles exiting the LArTPC
 - With the ALICE upgrade to GEM Readout Chambers (ROCs) this past summer, the original MWPC ROCs are now available for reuse

High-Pressure Gaseous Argon TPC

DUNE's HPgTPC: a new purpose for ALICE's old ROCs

• ALICE-like TPC, with a few modifications

- Need to build new readout chambers to fill the central region of each endcap
- No inner field cage
- Hosted inside a pressure vessel
- At 10 atm, the DUNE HPgTPC would have 1.8 tons active mass (1-ton fiducial)
 - Base assumption for gas mixture 90/10 Ar/CH₄
 - 97% of neutrino interactions are on Ar nuclei

Readout Chambers

This summer, DUNE team acquired all 36 inner readout chambers
 + 36 outer readout chambers

15 2019 October 21 J. L. Raaf | DUNE MPD | 6th Near Detector Workshop @ DESY 🖧 Fermilab 🖂 💦

IROC Test Stand

- At Fermilab
 - Pressure vessel rated to 10 atmospheres
 - Can accommodate 1 IROC with a short (~10 cm) drift region
- Planned tests
 - Verify high-pressure operation
 - Gas gain & gas mixture tests
 - Development of full readout chain, synergistic with LArTPC readout (LArPix ASIC developed at LBNL)

OROC Test Stand

- At Royal Holloway University of London
 - Pressure vessel rated to 5 atmospheres
 - Can accommodate 1 OROC and a ~40 cm drift region
- Planned tests
 - Verify high-pressure operation
 - Gas gain & gas mixture tests
 - Readout via Imperial College London cards based on the CMS APV25 chip

MPD Software/Simulations

Two main efforts

- GArSoft framework with full reconstruction and start at PID

- <u>Many parts in place</u>: event generation, geometry, particle interactions and energy deposition, drift & diffusion, digitization, hit-finding and clustering, pattern recognition, track fitting, ECAL digitization, ECAL reconstruction, ionization-based PID, deep learning algorithms for very short tracks, preliminary vertex-finding, preliminary TPC-ECAL track matching
- <u>Still to do</u>: TPC field response and electronics response, optimization of pattern recognition, optimization of track fitting, optimization of TPC-ECAL track matching, full ECAL energy reconstruction
- Several MPD stand-alone analyses underway with these tools

Parameterized MPD reconstruction & PID

- ND Software Integration group has been working to put in place a full spill simulation with all near detector components and surrounding rock
- Parameterization of "reco" variables used as input for long baseline analysis and for other analyses

Event Reconstruction

Fully reconstructed neutrino interaction in HPgTPC using GArSoft

Finding Low Energy Tracks

 Average occupancy per beam spill in the DUNE HPgTPC is small, but local occupancy (near the interaction vertex) can be large, with many particles exiting a single point

- Simulation of multiple protons exiting a single interaction point, each in the range ~3-15 MeV KE
- RANSAC-based clustering algorithm + neural net energy estimate
- First pass achieves efficiencies:
 - ~20% for 5 MeV protons
 - ~80% for 10 MeV protons
 - Improvement expected with additional work in this area

Summary

The DUNE MPD is planned to be a highly capable detector that:

- Provides a large acceptance muon spectrometer for the LAr detector with minimal dead material between LAr and HPgTPC
- Collects a statistically significant independent sample of neutrino interactions on argon gas
 - precise view of *v*-Ar interactions with very low threshold, sign selection, and minimal secondary effects
- Provides capability to tag and analyze all components of the neutrino beam (v_{μ} , anti- v_{μ} , v_{e} , anti- v_{e})

Thank you!

	Pad size [mm ²]	Number of rows	Number of pads
Inner chamber (84.1 $< r < 132.1$ cm)	4×7.5	64	5732
Outer chamber $(134.6 < r < 198.6 \text{ cm})$	6 × 10	64	6038
Outer chamber (198.6 $< r < 246.6$ cm)	6 × 15	32	4072
TPC total		160	570312

Table 4.2: Readout pads.

LAr vs. GAr range

- Lower density allows lower thresholds for identifying and reconstructing tracks
 - Better measurements of low energy particles ejected in neutrino interactions → improvements to neutrino interaction generators

Expected energy spectra

- We can only detect the *products* of the neutrino interactions and reconstruct the neutrino energy from these outgoing particles
- Most interaction products have momenta < 1 GeV/c
 - Need a low density tracker to successfully measure the lowest energy interaction products
 - But must balance desire for low density with need for high statistics (1 atm pressure in an ALICE-sized TPC would not provide enough neutrino interactions \rightarrow must go to higher pressure)

Purpose/Goals of the MPD

Measure particles that leave the LArTPC and enter the MPD

Forward-going muons are not well contained by the LAr

Provide data to constrain neutrino-nucleus interaction systematic uncertainties

- Independent sample of neutrino events on same (argon) target nucleus
- Lower energy particle detection thresholds than LAr

Precisely and accurately measure all components of the flux $(v_{\mu}, \overline{v_{\mu}}, v_{e}, \overline{v_{e}})$

- Event-by-event sign selection
- $v_e / \overline{v_e}$ separation

Reconstruct neutrino energy via spectrometry and calorimetry

Constrain LArTPC detector response and selection efficiency

Measure energetic neutrons from neutrino-argon interactions via TOF with the ECAL (desired)