The MPD ECAL - Introduction

Frank Simon Max-Planck-Institute for Physics

DUNE Near Detector Workshop DESY, October 2019

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Outline

- High-level motivation
- ECAL Concept
 - Technology choices & options
- First Cost Estimate and main Cost Drivers
- R&D Items

MPD ECAL - Overall Concept

Motivation & Goals

- The MPD will make high-precision measurements of v interactions on Ar
- ECAL and HPgTPC complementing each other The **ECAL** has to provide:
 - Photon energy measurement
 - Neutral pion reconstruction
 - Particle identification (electron, muon, pion)
 - Determination of interaction time, muon tracking into and out of TPC
 - Ideally: Neutron detection and energy measurement
 - . . .

• Requires full coverage and precise measurement of charged and neutral particles with low thresholds

- \Rightarrow Energy range from ~ 50 MeV to ~ 2 GeV: Small stochastic term crucial
- Requires longitudinal segmentation

Main Performance Goals

And consequences for Calorimeter Concept

- Electromagnetic resolution: 6 %- 8% / Sqrt(E [GeV])
 - Drives sampling structure: Thin absorbers!
- π^0 reconstruction: Requires shower separation, position and angular resolution
 - Motivates highly granular readout

MPD ECAL Introduction - DUNE NDWS, October 2019

Main Performance Goals

And consequences for Calorimeter Concept

- Electromagnetic resolution: 6 %- 8% / Sqrt(E [GeV])
 - Drives sampling structure: Thin absorbers!
- π^0 reconstruction: Requires shower separation, position and angular resolution
 - Motivates highly granular readout

MPD ECAL Introduction - DUNE NDWS, October 2019

- Neutron reconstruction a potential gamechanger [still needs to be established in realistic environments!]
 - Requires timing on the few 100 ps level to enable energy measurement via time-of-flight

The Boundary Conditions

A Large Detector

- The ECAL surrounds the pressure vessel of the HPgTPC
 - Fiducial volume of TPC: 2.7 m radius, 5.5 m length
 - Inner dimensions of ECAL need to accommodate the PV - present assumptions:
 - 2784.5 mm radius
 - 7288.5 mm length

The Boundary Conditions

A Large Detector

- The ECAL surrounds the pressure vessel of the HPgTPC
 - Fiducial volume of TPC: 2.7 m radius, 5.5 m length
 - Inner dimensions of ECAL need to accommodate the PV - present assumptions:
 - 2784.5 mm radius
 - 7288.5 mm length

that is a cylinder with a surface of 127.5 m², endcaps 2 x 24.4 m²

The Boundary Conditions

A Large Detector

- The ECAL surrounds the pressure vessel of the HPgTPC
 - Fiducial volume of TPC: 2.7 m radius, 5.5 m length
 - Inner dimensions of ECAL need to accommodate the PV - present assumptions:
 - 2784.5 mm radius
 - 7288.5 mm length

that is a cylinder with a surface of 127.5 m², endcaps 2 x 24.4 m²

As comparison: The CMS ECAL inner radius 1.3 m, inner length ~ 5.8 m

MPD ECAL Introduction - DUNE NDWS, October 2019

The Global Layout

Still subject to optimisation

 Need a calorimeter geometry that is fits the intrinsically planar geometry of the highly granular sampling structures, and matches the cylindrical HPTPC structure & pressure vessel:

First approach: An octagonal structure NB: Also considering higher polygons (dodecagon, ...) since this allows to have a deeper calorimeter while satisfying overall space constraints

For now, assuming octagonal layout

Dimensions:

- Octagon side length: ~2.3 m
- Barrel subdivided into 5 rings, each module ~ 1.46 m long [ad-hoc division - adjustments based on technical constraints possible]
- Endcaps subdividided into quarters 4 modules per side

The Global Layout

Accounting for environment and constraints

- Things tend to go forward do not need the same granularity, and same depth / resolution everywhere
 - Obviously something that requires understanding and optimisation - in progress

Defining two regions:

- DownStream (DS): Forward Region
- UpStream (US): Side & backward region (including caps)

Possibly variable longitudinal segmentation:

- thin layers in front to enable good energy resolution for low-energy photons
- thicker layers in the rear to ensure sufficient containment with a compact detector

Technology Choices & Options: Baseline

(Partially) based on CALICE AHCAL

• High granularity readout planes: scintillator tiles

Scintillator tiles

one SiPM per tile

PCB

Technology Choices & Options: Baseline

(Partially) based on CALICE AHCAL

• High granularity readout planes: scintillator tiles

• Low granularity readout planes: crossed scintillator strips

MPD ECAL Introduction - DUNE NDWS, October 2019

Scintillator tiles

one SiPM per tile

PCR

Scintillator Stribs to Si'PM

crossed strips in alternating layers, read out on both sides (strips span full length of segment)

The Current Detector Model

A starting point - likely not what would get built

Active elements:

- high granularity: 25 x 25 mm² tiles, 5 mm thick
- Iow granularity: 40 mm wide, 5 mm thick bars over full module length, crossed in alternating layers

low granularity layers: alternating orthogonal bars

- high granularity layers: tiles
- "Downstream" segment
 - Downstream layout [3 downstream octagon segments]:
 - 60 layers, first 8 high granularity
 [benefits for energy resolution with 20 additional layers, geometrically possible in dodecadon layout]
 - Upstream layout [5 side and upstream segments, endcaps]:
 - 60 layers, first 6 high granularity

ECAL Cost

- Mainly a spreadsheet exercise between Eldwan and myself Based on:
 - Cost information from Belle II, CMS HGCAL, CALICE AHCAL & TCMT
 - Educated guesses & rough estimates

• CORE Cost (incomplete - missing production / installation tooling, yield, off-detector systems & services,...)

Not even preliminary - to be taken with a large grain of salt, primarily as a discussion starter

Showing Division across Key Items

- Based on the current design presented by Eldwan (8 HG, 52 LG layers DS, 6 HG, 54 LG layers US)
 - Results in ~2.7 M channels, ~ 90% in the HG elements
 - Cost estimates based on CALICE AHCAL, CMS HGCAL, Belle II KLM,...
- Size matters:
 - ~ 29 m³ absorber (when using Cu)
 - ~ 73 m³ scintillator
 - ~ 325 km fibers
 - ~ 1500 m² PCB for HG layers NB: Strips also need PCBs for SiPM connectivity, ASICS - here assume 150 m²
- (also remarked by LBNC)
- \Rightarrow Have to find an optimal working point in terms of performance, feasibility and "technological interest"

• Channel count the main cost driver - clearly need to understand how much is needed / can be justified

Frank Simon (fsimon@mpp.mpg.de)

Zooming in on scaling expectations

MPD ECAL Introduction - DUNE NDWS, October 2019

Frank Simon (fsimon@mpp.mpg.de)

Zooming in on scaling expectations

MPD ECAL Introduction - DUNE NDWS, October 2019

Absorber & Mechanics material costs + Scintillator machining - driven by WLS Fibers SiPMs detector size FEE - ASICs PCBs Interfaces 25 % 6 % 9 %

Frank Simon (fsimon@mpp.mpg.de)

Zooming in on scaling expectations

MPD ECAL Introduction - DUNE NDWS, October 2019

Zooming in on scaling expectations

MPD ECAL Introduction - DUNE NDWS, October 2019

Scintillator

WLS Fibers

FEE - ASICs

Interfaces

SiPMs

PCBs

material costs + machining - driven by detector size

25 %

6 %

9 %

driven by size and scintillator quality - for all-strip / fiberless options scintillator price may go up, compensating other savings

driven by channel count - significant saving for all-strip solutions, in fiberless scenarios savings may be partially eaten up increases in SiPM size to ensure sufficient signal & good timing

Frank Simon (fsimon@mpp.mpg.de)

Zooming in on scaling expectations

MPD ECAL Introduction - DUNE NDWS, October 2019

Scintillator

WLS Fibers

FEE - ASICs

Interfaces

SiPMs

PCBs

material costs + machining - driven by detector size

25 %

6 %

9 %

driven by size and scintillator quality - for all-strip / fiberless options scintillator price may go up, compensating other savings

driven by channel count - significant saving for all-strip solutions, in fiberless scenarios savings may be partially eaten up increases in SiPM size to ensure sufficient signal & good timing

Frank Simon (fsimon@mpp.mpg.de)

Zooming in on scaling expectations

Scintillator

WLS Fibers

FEE - ASICs

Interfaces

SiPMs

PCBs

material costs + machining - driven by detector size

25 %

6 %

9 %

driven by size and scintillator quality - for all-strip / fiberless options scintillator price may go up, compensating other savings

driven by channel count - significant saving for all-strip solutions, in fiberless scenarios savings may be partially eaten up increases in SiPM size to ensure sufficient signal & good timing

Frank Simon (fsimon@mpp.mpg.de)

Zooming in on scaling expectations

MPD ECAL Introduction - DUNE NDWS, October 2019

Scintillator

WLS Fibers

FEE - ASICs

Interfaces

SiPMs

PCBs

material costs + machining - driven by detector size

25 %

6 %

9 %

driven by size and scintillator quality - for all-strip / fiberless options scintillator price may go up, compensating other savings

driven by channel count - significant saving for all-strip solutions, in fiberless scenarios savings may be partially eaten up increases in SiPM size to ensure sufficient signal & good timing

Frank Simon (fsimon@mpp.mpg.de)

Cost: Strips Only

Showing Division across Key Items

- Using crossed strips everywhere
 - To recover some granularity, using 30 mm wide strips throughout
 - Results in a total of 213k strips => 426k channels
 - Same "metrics" for cost estimate
- Lengths, Areas & Volumes:
 - ~ 29 m³ absorber (when using Cu)
 - ~ 73 m³ scintillator
 - ~ 480 km fibers
 - ~ 210 m² PCB for SiPM / strip & ASIC coupling

quality (= more costly) scintillator

• Substantially lower channel count than systems with high granularity layers - fiberless strip readout may provide better timing, eliminates need for fibers, but will require larger (= more costly) SiPMs, and higher

Comparing Two Extremes: Default and Strip only

Rough absolute Cost

MPD ECAL Introduction - DUNE NDWS, October 2019

Interfaces
PCBs
FEE - ASICs
SiPMs
WLS Fibers
Scintillator
Absorber & Mechanics

Rough guesses for the total costs:

- Default: 15.2 MEUR
- Strips only: 8.5 MEUR

20 extra strip layers in the downstream barrel segments in the dodecadon geometry would add ~ 1.5 MEUR

R&D Items

Only a few ideas - many possibilities exist

MPD ECAL Introduction - DUNE NDWS, October 2019

Rethinking the Strip Solution

A possible alternative - capitalizing on timing

- Scintillator strips with embedded wavelength-shifting fibers a "standard technology", but:
 - Fibers have a negative impact on timing
 - Fibers are a relevant cost driver

Rethinking the Strip Solution

A possible alternative - capitalizing on timing

- Scintillator strips with embedded wavelength-shifting fibers a "standard technology", but:
 - Fibers have a negative impact on timing
 - Fibers are a relevant cost driver
- Consider strips with direct readout at both ends position resolution within strip via timing \rightarrow • May require a larger SiPM for increased light yield: Offsets cost advantage of eliminating fiber

 - Requires highly transparent scintillator, possibly shorter strips for sufficiently high and uniform light yield

Rethinking the Strip Solution

A possible alternative - capitalizing on timing

- Scintillator strips with embedded wavelength-shifting fibers a "standard technology", but:
 - Fibers have a negative impact on timing
 - Fibers are a relevant cost driver
- Consider strips with direct readout at both ends position resolution within strip via timing \rightarrow • May require a larger SiPM for increased light yield: Offsets cost advantage of eliminating fiber

 - Requires highly transparent scintillator, possibly shorter strips for sufficiently high and uniform light yield

And more general: Advanced scintillator capabilities, such as

- improved neutron sensitivity by doping or coating
- new materials, new production techniques, ...

Simulation & Reconstruction

Towards a realistic understanding of capabilities

- Understand perspectives for key goals (including neutrons!) in *realistic background environment*
- Further understand / develop reconstruction/ performance of all relevant objects
 - One example: "Timing-assisted π^0 reconstruction"

In first MPP studies: direction + energy of cluster (challenging for low energies!)

with few 100 ps timing: may improve π^0 localization => \$t_2-\$t_1=t_2-t_1

- In general:
 - Need to understand capabilities of tiles vs strips
 - Realistic neutron reconstruction in tile and strip geometries
 - . . .

Impact of Realistic Response Uniformity & Tolerances

One example for ongoing studies

• Investigated the impact of tile non-uniformities, gaps between tiles and the material variations due to the ASIC in the on the PCB on energy resolution with a DUNE MPD ECAL - like geometry For tile uniformity: Assuming "worst case", with misalignment of photon sensor wrt the SiPM on the level of ~ 1 mm

Frank Simon (fsimon@mpp.mpg.de)

Impact of Realistic Response Uniformity & Tolerances

One example for ongoing studies

ASIC in the on the PCB on energy resolution with a DUNE MPD ECAL - like geometry For tile uniformity: Assuming "worst case", with misalignment of photon sensor wrt the SiPM on the level of ~ 1 mm

MPD ECAL Introduction - DUNE NDWS, October 2019

• Investigated the impact of tile non-uniformities, gaps between tiles and the material variations due to the

Frank Simon (fsimon@mpp.mpg.de)

Conclusions

and a look forward

- We do have a concept for the MPD ECAL, based on well established technology
 - The main cost drivers are understood
 - The size of the detector clearly is a challenge

Conclusions

and a look forward

- We do have a concept for the MPD ECAL, based on well established technology
 - The main cost drivers are understood
 - The size of the detector clearly is a challenge

Items to explore, questions to answer:

- Optimise detector design in terms of materials, geometry, ...
- Need to understand what features are actually needed to achieve the needed performance
- Need to understand the which aspects of the goals are achievable in a realistic background environment
- Develop reconstruction to get fully realistic performance estimates
- Perform hardware R&D to identify optimal (performance, cost) technological solutions
- Develop realistic engineering design, addressing mechanical constraints

