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The goals of the KLOE/3DST system

*Measuring CP violation by detecting a spectrum distortion requires a precise
beam monitoring with the following functionalities in a few-days basis

+ Event rate: requires a large-mass active detector

+ Beam width: requires relatively large width and segmentation

+ Spectrum: requires a spectrometer to measure the particle momenta
*Measure the neutrino and antineutrino flux using different but complementary

methods
*Precise measurements of neutrino interactions in other materials than argon
with neutron detection

+ Complementary measurements to Argon target detectors

+ Form a robust ND system as a whole against uncertain and unknown

systematic error sources
*One of the key tools is detecting and measuring the neutron energy on an
event-by-event basis

+ Lack of knowledge on neutron content is a known source of uncertainty in
calorimetric energy reconstruction. Different for neutrino and antineutrino

Interactions
+ Powerful avenue to explore and improve interaction models and measure

the flux with minimal cross-section model dependence



Near Detector system

The KLOE/3DST in

e ArCube and MPD detectors will move off-axis (DUNE-PRISM

)

axis will be KLOE/3DST

+ 3D scintillator tracker as active neutrino target

® The only detector always on-
+Low

density tracker to precisely measure particles

escaping from the scintillator
+ Electromagnetic CALorimeter (ECA

+ Superconducting solenoid magnet
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The 3D Scintillator Tracker

PLthtype funded under the US-dapan program
2018 JINST 13 P02006 S

NIM A936 (2019) 136-138
» Detection efficiency at 4x (>90% for muons)

* Muon p resolution by range ~2-3%

e Detect protons above ~300 MeV/c

e Time resolution ~ 0.9ns per channel (MIP), i.e. ~0.5ns per cube (MIP)
* Very good neutron detection capability

It will be installed in the T2K Near Detector in fall 2021 (arXiv:1901.03750)
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CERN-SPSC-2018-001

SPSC-P-357 The 3D Scintillator Tracker

arXiv:1901.03750

The design is based on the R&D performed for the T2K SuperFGD detector
Optimization of the box thickness will depend on FEA results and internal cube structure
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NIM A 419 (1998) 320-325

The KLOE detector ™
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The KLOE Magnet

e Superconducting magnet
e B-field ~ 0.6 T in the center

Layers 2

Turns/layer 368

Ampere-turns 2.14 MA-T Source Heat load
Operating current 2902 A Current leads 0.6 g/s
Stored energy 14.3 MJ 4 K Radiation and conduction 55W
Inductance at full field 34H 70 K Radiation and conduction | 530 W
Discharge voltage 250V

Peak quench temperature 80K

NIM A 419 (1998) 320325
NIM A482 (2002),364




NIM A 419 (1998) 320-325

The KLOE ECAL NIM A482 (2002),364

More details In

e KLOE electromagnetic calorimeter ~15 Xo ECAL L Di Noto’s talk

e Module made of 5 bars 4.4cm granularity, 4880 channels
¢ 1 mm diameter sci.-fi. (Kuraray SCSF-81 and Pol.Hi.Tech 0046)

e | ead:Fiber:Glue volume ratio = 42:48:10 (thickness = 23 cm)
Lead

Za |

‘Ime

1}111:0 135 mm

6, =57%/ \/Edep(GeV) 6, =54 ps/ \/Edep(GeV)

Plan: cool down KLOE and perform cosmic rays run before disassembling itg



KLOE/3DST configuration By Bob Flight

———— (3380] ——== = 7[2036]  f==—

3DST inside KLOE:
2.24x2.4x1.92 m3
10,941,235 tons

¢ This drawings are used for all
... Cube the simulations studies

| : e Optimization of the low-density
ECAL | ow-density tracker tracker geometry is ongoing 9



Working Group organization

e At the Magnet workshop @Fermilab in early September we discussed
about possible physics measurements and detector system configurations,
involving 3DST/KLOE and either TPCs or Straw Tubes as low-density
tracker with pros/cons

¢ \We formed a single unified working group, ramping up quickly, with the
goal of optimizing the system upon physics studies

e Conveners of the new group: Lea Di Noto (INFN Genova), Federico Ferraro
(INFN Genova), Paola Sala (INFN Milano), Davide Sgalaberna (CERN),
Matteo Tenti (University of Bologna), Guang Yang (Stony Brook University)

¢ \We had the kick-off joint BDST+KLOE meeting on the 9th of October and a
second meeting on the 18th of October

¢ \We aim to have a set of complete studies ready for the CDR
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The detector system configuration

¢ At the magnet workshop @Fermilab we agreed to investigate two main
configurations of the low-density tracker:

+3DST + TPC tracker: (baseline 3DST, 2.4X2.4X2m3 plus TPC
trackers)

+3DST + Straw tracker (baseline 3DST, 2.4X2.4X2m3 plus balance
of volume filled)

e The system will be optimized upon physics studies that will be
performed in the near future
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Option 3DST+TPC

e TPCs similar to those that will be installed in the T2K near detector in fall 2021

e Extensive R&D for ILC: new design of resistive micromegas for T2K with cosmics
test at CEA Saclay, beam tests at CERN and DESY

arXiv:1907.07060
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Option 3DST + Straw Tubes

e Possible STT configurations:

+ Straw Pure tracking in STT: remove most
density & mass

+ Physics measurements in STT: multiple

nuclear targets, increase density & mass
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Detailed studies and optimization are ongoing to evaluate performance:
find optimal compromise between target mass (statistics) & resolution
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Short-term studies

Beam spectrum monitoring

+Inclusive CC + low nu

+ Repeat beam monitoring studies for both configurations

+ Single particle efficiency as a function of energy, angle, etc.
Neutron background (purity and efficiency)
Flux measurements

Selection (efficiency and purity) of CCQE-like, CC resonsance, CC
multipions interaction modes
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Beam monitoring performances

e KLOE/3DST can detect issues in the
beamline very efficiently by measuring
the muon spectrum

e Compared with four 7-ton modules that
measure the rate at 0,1,2,3 meters from
the on-axis position (28 ton in total)

Stat. Error and detector effect (smearing + efficiency applied) Sl gIliﬁC E’LIlCG, \ ?
g 0 [ wom i xanmosmm ST [ - Changed beam parameter | Rate-only monitor | 3DST-S
8 25| o2 o et et T proton target density 1.9 7.8
_;,), ol om2Yshios e | J proton beam width 3.0 6.6
. e > 58
I SRty R proton beam theta phi 0.2 12.5
E F horn 1 along x 1.9 8.8
-5 horn 2 along x 0.7 12.8
s e 7 s s horn 1 along y 0.2 9.9
horn 2 along y 0.4 6.3
o ®* Measuring the spectrum is much more
powerful than the measuring the rate
* Using single 3DST module, ~11 cm
oo uncertainty on the beam center can be

achieved with 1 week data taking

0.8 0.6 0.4 0.2 -0.0 0.2 0.4 0.6 0.8
module location [m] 15



Beam monitoring performances

e \We were asked by the NDDG conveners to check the impact on beam
profile monitoring performance if 3DST is slightly off the beam axis along Y
(height): simulated 3DST at 3m, 1m, 0.4m and 0.3m off-axis positions
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e For any of the configurations above the beam center Y position would be
measured with a bias larger than 10cm

* The beam has to be in the center of 3DST to provide good beam monitoring 4



G4 geometry

* Work in progress to include the
GEANT4 geometries of all the
detector in the ND Software
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e Full simulation of the ECAL
performance, including
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Time [ns]

Time [ns]

Preliminary neutron background studies
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e Select first neutron induced hit in time

Require energy deposited >0.5 MeV
and inner 1x1x1 m3 fiducial volume (FV)
Bkg from neutrons from outside the FV
IS very small

First look at secondary neutrons (re-
interactions of primary pions, neutrons
or protons in the detector)

+We are studying the rejection cuts
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Simulation studies with FLUKA

In FLUKA:

Integration of 3DST, surrounded by tracking devices (STT).
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e Use FLUKA to cross-check and validate some of the studies

e Geometry fully implemented. Work in progress to validate the first results
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Ongoing analyses
e GEANT4:
+ Neutron background studies in 3DST
+ Beam rate and spectrum monitoring studies
+ Detailed simulation of ECAL response
e FLUKA:

+ Muon neutrino CC events with vertex in 3DST (acceptance/
resolution)

+ Muon neutrino CC event with vertex in 3DST: response to neutrons

+ Muon neutrino CC events in Magnet+ECAL: background rejection
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CDR content

a.Informations to be included in the CDR
I.Updated chapter in hall/infrastructure
li.Near detector assembly
lii.Update from all sub-groups (“New” group — KLOE+..)
Iv.New beam monitoring studies
1.Importance of spectrum vs rate only
v.Incremental study on LBL analysis input
b.What simulations can we realistically expect to accomplish?
I.Detailed beam monitoring
Ii.What we can and cannot do with neutrons
lii.Incorporation of additional samples into the LBL analysis
1.Provide new samples

Iv.Nuclear theory, e.g. carbon measurements to validate

models in argon (if enough time is left)
21



Conclusions

The 3DST and KLOE working groups have merged and are now
working together efficiently

First kick-off meeting on the 9th of October
We are having bi-weekly meetings on Friday 5pm CEST, 10am CST
Contest to choose the detector system name has started

+ Any collaborator is welcome to suggest a name

+ contact Luca Stanco (luca.stanco@pd.infn.it)

Once the name is chosen a new mailing list will be made for the
working group
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e Event rate for 1.46x1021 POT / year (80 GeV beam, three horns, optimized)

The 3DST event rate

* Applied a 10 cm out-of-FV cut:
+ Fiducial Volume =2.2x 2.2 x 1.8 m3

+ Fiducial Mass = 8.7 tons (only 3DST)

Channel v mode v mode
V) CC inclusive 13.6x10°% | 5.1x10°
CCQE 2.9x10% | 1.6x10°
CC 7° inclusive 3.8x10% | 0.97x10°
NC total 4.9x10% | 2.1x10°
v,-e~ scattering 1067 1008
v, CC coherent 1.26 x10° | 8.6 x10%
v, CC low-v (v <250 MeV) | 1.48x10° | 8.8 x10°
v, CC coherent 2.1x103 719
ve CC low-v (v <250 MeV) | 2.1x10* | 4.7 x10?
ve CC inclusive 2.5x10° | 0.56x10°

* The FV will have different definitions depending on the physics measurement
* Depending on the ECAL design, additional mass could be achieved for some

physics channels
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The KLOE model By Bob Flight

e Estimated the available space in the ECAL inner volume

e Update the dimensions of 3DST + Tracker to keep the same mass as in
the original configuration and at the same time to fit the available space
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Importance of beam monitoring with DUNE-PRISM

e DUNE ND conceptual baseline includes three main detector systems:
+LAr and HP-TPC will move off-axis (range of ~30 m)
+3DST spectrometer will be the only on-axis detector

e DUNE-PRISM relies on a good knowledge of the flux

¢ Undetected problems in the beamline would result in a wrong ND—>FD
extrapolation

e Example from the NUMI beam: MINOS ND found problems by looking at
the time-dependent variation of the neutrino reconstructed energy spectrum,
while NOvVA (off-axis) didn’t observe significative changes

shifted ND extrapolated FD flux

Flux
o

nominal ND extrapolated FD flux

shifted FD flux

11 11

sin”2(theta) = 0.5
Dm2 = 0.00252

1 1 1 1 1 e
. 2.5 3.0 3.5 4.0 4.5 5.0

Energy (GeV)
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Simulation studies with FLUKA

Two parallel streams

GEANT4 + GENIE + dunendggd
FLUKA (with internal generator) + ROOT

Same neutrino fluxes from http://home.fnal.gov/ Ijf26/DUNEFluxes/

Same 3DST dimensions/materials (from Davide)

Simulations

Plots: em-calo hits
(black) and readout cell
centres (yellow)
(integrated over many
events)

Same tracker (STT) configuration (new one under implementas, s-
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e FLUKA is a parallel analysis to cross-



