

6th DUNE Near Detector Meeting.2019 DESY, Hamburg, October 22, 2019

Felix Sefkow **DESY**

Calorimeter prototypes for future e+e- colliders

Production procedures

Electronics directions

Prototyping Experience for an e+e- Detector

Particle Flow Paradigm

Tackle the jet energy challenge.

Reconstruct each particle individually and use optimal detector Requires fine 3D segmentation of and sophisticated software Today all linear collider detector concepts follow particle flow concept

Particle Flow Paradigm

Tackle the jet energy challenge.

110

Particle Flow Paradigm

Tackle the jet energy challenge.

Technologies for Highly Granular Calorimeters

Because we can.

Large area silicon arrays

silicon calorimetry grows out of the domain of small plug devices

New segmented gas amplification structures (RPC, GEM, μ Ms) Silicon photomultipliers on scintillator tiles or strips

small, B-insensitive, cheap, robust

SiPM-on-Tile Evolution

A long way

2003: MiniCal

SiPM-on-Tile Evolution

A long way

2006: Physics Prototype

SiPM-on-Tile Evolution

A long way

The Next Step: Scalability

Technological prototypes.

- 1000's of channels per m²
- 1000's of m²
- must embed electronics and go digital as early as possible; power pulsing
- Integrate SiPMs in read-out board, too

The Next Step: Scalability

Technological prototypes.

polystyrene tiles (Uniplast, RU) with ESR film

 Integrate SiPMs in read-out board, too

The Next Step: Scalability

Technological prototypes.

- 1000's of channels per m²
- 1000's of m²
- must embed electronics and go digital as early as possible; power pulsing
- Integrate SiPMs in read-out board, too

polystyrene tiles (Uniplast, RU) with ESR film

Automated Production and Quality Assurance

Establishing the concept.

In addition test infrastructures:

- Multi-channel SiPM tests
- Automated ASIC tests
- PCB tests using LEDs
- Coscmic tests after tile assembly

Prototyped.

Stack services dimensioned for full collider detector

- Data concentration
- Power distribution
- Cooling

Prototyped.

Stack services dimensioned for full collider detector

- Data concentration
- Power distribution
- Cooling

Prototyped.

Stack services dimensioned for full collider detector

- Data concentration
- Power distribution
- Cooling

Prototyped.

Stack services dimensioned for full collider detector

- Data concentration
- Power distribution
- Cooling

Prototyped.

Stack services dimensioned for full collider detector

- Data concentration
- Power distribution
- Cooling

AHCAL technological prototype

Uni. Mainz
DAQ, assembly
Cosmic test stand

MPI Munich
Mechanics (cassettes),
SiPM tests

Prague DAQ

Strong contribution from different international & German institutes

DESY

Electronics & mechanics design Commissioning Testbeam software Testbeam coordination

All institutes

Analysis of data

R&D contribution from additional partners

Shinshu Uni, Tokyo Uni (Japan) JINR, Dubna, MEPHI (Moscow) UT Arlington, Northern Illinois Uni (USA)

Uni. Sussex
Monitoring

Lebedev I *Tile production*

Omega (IN2P3)

ASICs

CERN

Tungsten structure, test beam, logistics

Electrons and Hadrons

Mixed Beams

- Electron data 10 100 GeV
- Hadron data 10 160 GeV

Electrons and Hadrons

Mixed Beams

- Electron data 10 100 GeV
- Hadron data 10 160 GeV

Temperature compensation

Online - Used routinely throughout 2018

SiPM parameters (almost all) depend on over-voltage

 $\Delta V = V_{\text{bias}} - V_{\text{breakdown}}(T)$

V_{breaddown} depends on temperature, very uniformly

Adjust $V_{bias}(T)$ to stabilise ΔV

Use gain (from single photoelectron peak spacing to monitor stability

Temperature compensation

Online - Used routinely throughout 2018

SiPM parameters (almost all) depend on over-voltage

 $\Delta V = V_{\text{bias}} - V_{\text{breakdown}}(T)$

V_{breaddown} depends on temperature, very uniformly

Adjust $V_{bias}(T)$ to stabilise ΔV

Use gain (from single photoelectron peak spacing to monitor stability

no HV adjust (same setting as the last configuration)

Y.Sudo

Construction Techniques for the CMS Upgrade

HGCAL Overview

Key Parameters (updated from the TDR):

- HGCAL covers $1.5 < \eta < 3.0$
- Full system maintained at -30°C
- ~640 m² of silicon sensors
- ~370 m² of scintillators
- 6.1M Si channels, 0.5 or 1.1 cm² cell size (6M) 240k scint-tile channels $(\eta \phi)$
 - Data readout from all layers
 - Trigger readout from alternate layers in CE-E and all in CE-H
- ~31000 Si modules (incl. spares)

Active Elements:

- Si sensors (full and partial hexagons) in CE-E and high-radiation region of CE-H.
- SiPM-on-Scintillating tiles in low-radiation region of CE-H

Electromagnetic calorimeter (**CE-E**): **Si**, Cu/CuW/Pb absorbers, 28 layers, 25.5 X_0 & ~1.7 λ

Hadronic calorimeter (**CE-H**): **Si** & **scintillator**, steel absorbers, 22 layers, \sim 9.5 λ (including CE-E)

Tileboard

Prototyping

Prototype TB-1 produced last week
64 SiPMs, HGCROC ASIC, DCDC converters, LEDs
Complex layout, HGCROC in 0.6mm pitch BGA package
Thermal vias for SiPM cooling
Test environment in preparation

Tileboard

Prototyping

Prototype TB-1 produced last week
64 SiPMs, HGCROC ASIC, DCDC converters, LEDs
Complex layout, HGCROC in 0.6mm pitch BGA package
Thermal vias for SiPM cooling
Test environment in preparation

Tile Module Assembly Flow Diagram

Production and QC

Quality assurance and quality control after each step

Foil Cutting Alternative

To replace laser cutter

Computer-controlled creasing wheel and knife easy to program: reads drawings in dxf format Reproducibility (spec) 0.02 mm

O. Bach, DESY

Tile Wrapping Tool

Ongoing work: DESY

Machine built, first tests done

Commercial pneumatic actuators, rest built in-house

Wrapping Machine Status

As of Today

Folienvorrat

Central part ready, feeders in production

expected for mid October

Size-dependent parts

existing for square CALICE tiles, used for assembly tests

ready for the 4 sizes of Tileboard-1

Figures:

Cost: 8k + 160 hrs w/s time

Speed: 3-4 tiles / min

Electronics Developments

Status Commissioning HBU6_HD

- New child in HBU family: HBU6_HD with KLauS ASICs (cooperation Uni-Heidelberg, DESY)
- > Two HBU6_HDs with KLauS5 ASICs, 4 new POWER4 boards completed.
- > First commissioning at DESY Sept. 2019: Zhenxiong, Mathias.

KLAUS ASIC:
optimised input stage
for SiPMs with smaller
gain, larger dynamic
range
continued read-out
timing

see Wei Shen's talk

CALICE SiW ECAL- Rationalisation/Miniaturisation of components

Constraints for the Slab Interface Board (SL-Board)

- The SI-board will be installed between ECAL and HCAL, separated by only 67 mm
- L-shape because of the cooling system
- Maximum Height : 6 to 12 mm depending on the location
- Control & Readout electronics at the extremity of the Slab
- Signal Integrity over a Slab : up to 15 interconnected ASUs
- Very low Power consumption (~ 150 mA/ Slab): needs to run in power pulsing mode

... similar to DUNE Structure

Readout scheme of CALICE SiW ECAL technological prototype

Maalmi/Jeglot/Breton

CALICE SiW ECAL- Rationalisation/Miniaturisation of components

SL-Board for up to 10000 cells and connection to concentrator unit via flat kapton cable

Service for up to 15 layers

Elegant space economic solution

Seamless operation in DESY beam test 2019

2019: One flat cable leaving the detector

< 2019: "Jungle" of bulky cables

Rationalisation/Miniaturisation of components

Thin PCB for compact detector solutions

- Height 1.2mm (for a 9 layer board!!!)
- Challenges in terms of planarity
- · were overcome in
- · close collaboration with Korean Company
- First beam test 2019 at DESY

VCI 2019

Rationalisation/Miniaturisation of components - Conclusions

- "Dead space free" granular calorimeters put tight demands on compactness
- Current developments within CALICE for SiECAL meet these requirements
- Can be applied/adapted wherever compactness is mandatory
- Components will/did already go through scrutiny phase in beam tests

Summary no Outlook

SiPMs are a mature technology meanwhile

SiPM-tile integration concepts suitable for large systems developed for e+e- colliders

Now being applied to CMS: production techniques for 240'000 channels

Electronics for compact ECAL designs and continuous readout under development

Established network of institutes and task sharing

Back-up