THE SHIP SPLITCAL ELECTROMAGNETIC CALORIMETER

Rainer Wanke JGU Mainz

6th DUNE Near Detector Workshop DESY

Oct 22nd, 2019

The SHiP Case

Where are all the new dark-matter particles?

Two possibilities why we have not detected them yet:

- They are very massive.
- They have no or very feeble couplings to SM particles.

Hidden Sector may be accessible in *high-intensity experiments* via sufficiently light particles which also couple to SM particles.

$$\mathcal{L}_{World} = \mathcal{L}_{SM} + \mathcal{L}_{mediation} + \mathcal{L}_{HS}$$

$$\underbrace{\text{Visible Sector}}_{\text{Standard Model}} \stackrel{\text{``Portal interaction''}}{---- \times ----} \underbrace{\text{Hidden Sector}}_{\text{``Dark standard model''}}$$

Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019

The SHiP Case

The dynamics of the *Hidden Sector* may drive the dynamics of the *Visible Sector* via renormalizable interactions (*"Portals"*) and be responsible for

- Dark Matter scalar or fermionic
- Neutrino oscillations
- Baryon asymmetry
- Higgs mass

Portals to the Hidden Sector

Vector portal ("Dark Photons (DPs)"):

Fields A'_{μ} with strength $F'_{\mu\nu}$, mixing with coupling ϵ with electroweak field $F_{\gamma}^{\mu\nu}$.

$$\mathcal{L}_{\text{Vector portal}} = \epsilon F'_{\mu\nu} F^{\mu\nu}_{Y}$$

Scalar portal:

New scalar particles *S*, which couples the square $\int_{0.1}^{U(1)'} \int_{0.1}^{w_{A'} \to 0} \frac{1}{2}$ the Higgs field. $\Delta I(2) = (\frac{2}{UV'})^2 m_S[\text{GeV}]$

P

Branching

0.1

0.01

KK

Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019

JG|U

1e-

1e-

1e-

1e-1e-

1e-(g1e-

 $\left[\tau^{+}\tau^{-}\right]U(1)'$

χ

 $\gamma - A'$

Portals to the Hidden Sector

Neutrino portal ("Heavy Neutral Leptons (HNLs)"):

New neutral singlet fermions N_l with Yukawa coupling $F_{\alpha l}$ to SU(2) lepton doublets L_{α} .

$$\mathcal{L}_{\text{Neutrino portal}} = F_{\alpha I} (\bar{L}_{\alpha} \cdot \tilde{\Phi}) N_{I}$$

- Other, non-renormalizable couplings:
 - Example: Pseudo-scalar Axion-like particles A (ALPs), which couple to two photons.

5

What do we look for in SHiP?

Models	Final states
Neutrino portal, SUSY neutralino	$\ell^{\pm}\pi^{\mp}, \ell^{\pm}K^{\mp}, \ell^{\pm}\rho^{\mp}, \rho^{\pm} \to \pi^{\pm}\pi^{0}$
Vector, scalar, axion portals, SUSY sgoldstino	$\ell^+\ell^-$
Vector, scalar, axion portals, SUSY sgoldstino	$\pi^{+}\pi^{-}, K^{+}K^{-}$
Neutrino portal ,SUSY neutralino, axino	$\ell^+\ell^- u$
Axion portal, SUSY sgoldstino	$\gamma\gamma$
SUSY sgoldstino	$\pi^0\pi^0$

- All kinds of final states:
 - Two-track with hadrons, muons, electrons, with and without photons.
 - Also neutral events with **photons only** (e.g. $ALP \rightarrow \gamma \gamma$).

Multipurpose detector

6

The SHiP Setup

Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019

7

Decay Vessel

- 50 m long decay volume for hidden-sector particles.
- Under vacuum (10⁻³ bar) to suppress neutrino interactions with air or gas.

Electromagnetic Calorimeter (SplitCAL)

The **ECAL** shall serve several purposes:

- Energy measurement of electrons & photons.
- Particle ID of electrons, muons and hadrons.
- Photon direction for $A \rightarrow \gamma \gamma$ reconstruction.

"SplitCAL":

- Scintillator ECAL.
- High-precision layers for shower direction (e.g. MicroMegas).

SplitCAL Prototype

Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019

9

SplitCAL Design

- ► Large absorber planes of 6 m × 12 m cross section
- About 40-50 scintillating planes (20-25 X₀). Strip orientation alternating in x and y and WLS fibre readout.
- ► 2 or 3 high precision layers for measurements of the shower development \rightarrow photon direction in $X \rightarrow \gamma \gamma$ decays.

Layout of Scintillating Layers

Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019

11

Basic Scintillator-ECAL Parameters

Assumptions for the basic parameters of the scintillator ECAL:

- **Depth:** $25 X_0$ (could probably be less, e.g. $20 X_0$)
- **# of layers:** 50 (or 40 for length of $20 X_0$)
- Front face: 6 m × 12 m = 72 m²
- Absorber: Lead $(X_0 = 0.56 \text{ cm})$ or iron $(X_0 = 1.76 \text{ cm})$.

→ Total weight: **115 tons** (Fe: 248 tons)

- Scintillators: 400 strips (3 m×6 cm×1 cm) / plane → 20000 strips
- ► Fibres: 2×20000×3 m = 120 km
- SiPMs: $2 \times 20000 = 40000$ (and same number of readout channels)

Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019

SplitCAL Prototype

No additional absorber layers

2 scintillator layers (x & y) 2 Micro- 2 scintillator Megas layers (x & y)

With absorber layers in front

22 absorber layers ($\approx 5 X_0$)

All kinds of setups easily possible.

Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019

Scintillating Planes

PRiSMA⁺

Each scintillating plane consists of one absorber plate, with 7 scintillating strips mounted.

- Double-sided readout $\rightarrow 2 \times 7 = 14 \text{ chan/plane}$.
- 2 horizontal & 2 vertical planes.
- SiPMs, preamps, and bias voltage mounted on a single PCB on the front faces of the strips.

Scintillating Planes

Each scintillating plane consists of one absorber plate, with 7 scintillating strips mounted.

- **Double-sided readout** \rightarrow 2 × 7 = 14 chan/plane.
- 2 horizontal & 2 vertical planes.
- SiPMs, preamps, and bias voltage mounted on a single PCB on the front faces of the strips.

SiPM with preamplifier

Absorber plate with 7 strips

Scintillating strip

Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019

SiPMs

Two types of SiPMs used:

Hamamatsu S13360-3025PE

 $3 \times 3 \text{ mm}^2$, 25 µm pitch, 14400 pixels. Used with WLS fibres of 1.2 mm diameter.

Hamamatsu S13360-6050PE

 $6 \times 6 \text{ mm}^2$, 50 µm pitch, 14400 pixels. Used with WLS fibres of 2.0 mm diameter.

Large number of pixels necessary for dynamic range between MIPs and electron showers.

S13360-3025PE

S13360-3025PE

17

Prototype Scintillator Readout

Preamps directly at the SIPMs.

- Amplify signal for transmission through ≈ 4 m of coaxial cables.
- Front-end electronics:
 - Shaping and digitization of SiPM pulses.
 - Two CAEN DT5702 modules
 - Each 32 channels with individual V_{bias}.
 - Multiplexed output, QDC functionality.
 - ROOT based DAQ software.
 - Very sensitive input, amplified signal needs to be downsized.

CAEN DT5702

- Prototype readout far too expensive (and clumsy) for O(40k) channels.
- Better: ASICs close to SiPMs for signal collection and digitization.

Requirements:

- Large dynamic range (MIPs as well as e.m. showers).
- Low rate.
- SiPM calibration (temperature variations!).
- Multiplexed digital output because of very many channels.
- → Very similar requirements as for calorimeters at the ILC.
- → Look at Calice AHCAL design.

Calice AHCAL readout board (144 channels)

Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019

Two working ASICs for Calice readout (very similar properties):

- SPIROC (v.2E), OMEGA/IN2P3-CNRS
- KLauS (v.5), Uni Heidelberg

(Z. Yuan)

Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019

Two working ASICs for Calice readout (very similar properties):

- **SPIROC** (v.2E), OMEGA/IN2P3-CNRS
- KLauS (v.5), Uni Heidelberg
- Both ASICs are suitable (may even have too much functionality).
 - ➔ Going to evaluate the KLauS chip from Heidelberg.

Open question:

Integration into very different layout of SHiP ECAL.

Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019

High-Precision Layers

Two MicroMegas chambers with 18 × 18 cm² active area.

- Each MicroMegas contains a double-layer with x and y strips, mounted on one absorber plate.
- **Strip pitch = 500 \mum \rightarrow 360 strips in each view.**
- Readout with custom ASICs (APV) and external trigger.

Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019

Main Open Questions

SiPM-WLS fibre coupling:

Secure, efficient and repeatable coupling.
Some ideas (e.g. diffusors), but more R&D needed.

SiPM Readout:

- ► Main difficulty: Dynamic range MIP → EM shower
- Try to use an existing ASIC and possibly adapt existing electronic.

Mechanics:

Integration of scintillators and absorbers. Keep in mind the size!

Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019

Conclusions

SplitCAL for the SHiP experiment

- Absorber-scintillator sandwich for energy measurement.
 - Long scintillating strips with WLS fibre readout.
 - Light readout with SiPMs, large dynamic range required.
- High-precision layers for photon directions
 - MicroMegas, similar to new ATLAS muon chambers.

Timeline for SHiP

- Decision for approval awaited for 2020.
- In case of approval: Start planned for 2026.

Accelerator schedule	2015 2016 2017 2018	2019 2020	2021 2022 2023	2024 2025 2026 2027
LHC	Run 2	LS2	Run 3	LS3 Run 4
SPS				SPS stop NA stop
SHIP / BDF	Comprehensive design & 1st	prototyping////Design and	d prototyping ///// Production	n / Construction / Installation
Milestones	ТР	CDS ESPP	TDR	

Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019

Average number of measured particles:

Simulation X Simulation X resolution 600 Testbeam data X 500 Χ 400 Events 005 200 100 0 0 5 10 15 20 25 30 Measured particles per shower

 $2.1 X_0$

5.7 *X*₀

PRISMA+

Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019

27

Shower width (excluding single-particle events):

PRiSMA⁺

Good agreement between measurement and simulation, only some additional noise seen in real data.

Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019

JG|U

Measured hit distributions:

Absolute distributions agree fairly well, considering the difficulty to simulate the beam profile.

Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019

JG|U

Measured hit distributions:

Better: adjusted position = mean(2nd MM) – mean(1st MM)
 again very good agreement apart from residual noise.

 $0.2 X_0$ $2.1 X_0$ 5.7 X₀ FairSHiP simulation X FairSHiP simulation X FairSHiP simulation > 2000 Testbeam data X Testbeam data X Testbeam data X 1750 800 400 X X Х 1500 600 300 1250 Entries 1000 400 200 750 500 100 200 250 0 10 -10 -5 Ó 5 10 -10 -5 0 5 -10 10 -5 0 X position [cm] X position [cm] X position [cm] FairSHiP simulation \ FairSHiP simulation 500 FairSHiP simulation Testbeam data Y Testbeam data Y Testbeam data Y 2500 1000 400 V 2000 800 <u>900</u> <u>.</u> 1500 Entries 600 Entri 200 1000 400 100 500 200 0 5 -10 -5 5 10 -10 -5 0 5 10 -10 -5 Ó 10 Y position [cm] Y position [cm] Y position [cm]

Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019