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The SHIiP Case

Where are all the new dark-matter particles?

Two possibilities why we have not detected them yet:
» They are very massive.

» They have no or very feeble = Hidden Sector”
couplings to SM particles. 7

e —

Hidden Sector may be accessible in high-intensity experiments
via sufficiently light particles which also couple to SM particles.

['World — LSM + Lmediation + LHS

“Portal interaction”
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The SHIiP Case

The dynamics of the Hidden Sector may drive the dynamics
of the Visible Sector via renormalizable interactions (, Portals“)
and be responsible for

» Dark Matter — scalar or fermionic

» Neutrino oscillations

» Baryon asymmetry

» Higgs mass
> ..

['World LSM + Lmediation + LHS

“Portal interaction”
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Portals to the Hidden Sector

» Vector portal (,,Dark Photons (DPs)“):

» Fields A}, with strength Fy, mixing with coupling € with
electroweak field Fy".

c — ¢F', Fl" ) ! )
Vector portal — €17 ;) Iy €

—— x R A

» Scalar portal:

» New scalar particles S, which couple to the square |} |? of
the Higgs field.

LScalar portal — ()\lez =+ giSi)((I)T(I))
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Portals to the Hidden Sector

» Neutrino portal (,Heavy Neutral Leptons (HNLs)“):

» New neutral singlet fermions N; with Yukawa coupling Fq to
SU(2) lepton doublets L.

_ ~ D
£Neutrin0 portal — Fop (La ' (I))]VI o, 0

» Other, non-renormalizable couplings:

» Example: Pseudo-scalar Axion-like particles A (ALPs),
which couple to two photons.
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What do we look for in SHiP?

Models Final states

Neutrino portal, SUSY neutralino (=nF (KT (pF, p* — 77V
Vector, scalar, axion portals, SUSY sgoldstino 7/~

Vector, scalar, axion portals, SUSY sgoldstino 77—, K™K~

Neutrino portal ,SUSY neutralino, axino (v
Axion portal, SUSY sgoldstino vy
SUSY sgoldstimo 070

» All kinds of final states:

» Two-track with hadrons, muons, electrons, with and
without photons.

» Also neutral events with photons only (e.g. ALP = vy).

Multipurpose detector
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The SHiP Setup
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Downstream

Upstream

Decay Vessel
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Electromagnetic Calorimeter (SplitCAL)

The ECAL shall serve several
purposes:

» Energy measurement
of electrons & photons.

» Particle ID of electrons,
muons and hadrons.

» Photon direction for
A — vy reconstruction.

N
,SPlitCAL":
> Scintillator ECAL.
» High-precision layers

for shower direction
(e.g. MicroMegas).

~1-2m

>
A

6mx12m

\117 / \117

Absorber ngh precision layers Scintillator

SplitCAL Prototype

2 scintillator 2 Micro- 2 scintillator
layers (x & y) Megas layers (x & y)
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SplitCAL Design

» Large absorber planes of 6m x 12 m cross section

» About 40-50 scintillating planes (20-25 Xp).
Strip orientation alternating in x and y and WLS fibre readout.

» 2 or 3 high precision layers for measurements of the shower
development =» photon direction in X = vy decays.

~1-2m
< >
A
|| 6mx12m
\
Wi A / \117/
Absorber High precision layers Scintillator
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Layout of Scintillating Layers

Horizontal layer Vertical layer

2 x200
strips

1200 cm

3000 mm
Scintillating strip

/

< > < >
600 cm 4 x 100 strips
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Basic Scintillator-ECAL Parameters

Assumptions for the basic parameters of the scintillator ECAL:

» Depth: 25 Xo (could probably be less, e.g. 20 Xp)
> # of layers: 50 (or 40 for length of 20 Xp)

» Frontface: 6mx12m=72mz2

» Absorber: Lead (Xo=0.56cm) oriron (Xo=1.76cm).

=» Total weight: 115 tons (Fe: 248 tons)
» Scintillators: 400 strips 3mx6cmx1cm) / plane =» 20000 strips

» Fibres: 2x20000x3 m=120 km
» SiPMs: 2 x 20000 =40000 (and same number of readout channels)
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SplitCAL Prototype
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SplitCAL Prototype

No additional absorber layers With absorber layers in front

| —

2 scintillator 2 Micro- 2 scintillator 22 absorber layers (= 5 Xo)
layers (x & y) Megas layers (x & y)

All kinds of setups easily possible.

@ rrismat Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019



Scintillating Planes

PCB
A "~ siPM

- WLS
fibre

420 mm
Scintillating strip

@ PRiSMA*

Each scintillating plane consists of one absorber
plate, with 7 scintillating strips mounted.

» Double-sided readout =» 2 x 7 =14 chan/plane.
» 2 horizontal & 2 vertical planes.

» SiPMs, preamps, and “
bias voltage mounted “

Absorber plate with 7 strips

on a single PCB on the
front faces of the strips.

560 mm
420 mm
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Scintillating Planes

Each scintillating plane consists of one absorber
plate, with 7 scintillating strips mounted.

» Double-sided readout =» 2 x 7 =14 chan/plane.
» 2 horizontal & 2 vertical planes.

» SiPMs, preamps, and
bias voltage mounted
on a single PCB on the
front faces of the strips.

s, E

SiPM with preamplifier Absorber plate with 7 strips

Scintillating
strip
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SIPMs

Two types of SiPMs used:

» Hamamatsu S13360-3025PE

3x3mm?, 25 um pitch, 14400 pixels.
Used with WLS fibres of 1.2 mm diameter.

» Hamamatsu S13360-6050PE

6x6 mm?2, 50 um pitch, 14400 pixels.
Used with WLS fibres of 2.0 mm diameter.

Large number of pixels necessary for dynamic
range between MIPs and electron showers.
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Prototype Scintillator Readout

» Preamps directly at the SIPMs.

» Amplify signal for transmission
through = 4 m of coaxial cables.

» Front-end electronics:
» Shaping and digitization of SiPM pulses.

» Two CAEN DT5702 modules

e Each 32 channels with individual Vypjas.
e Multiplexed output, QDC functionality.

e ROOT based DAQ software. CAEN DT5702
e \ery sensitive input,
amplified signal needs to be downsized.
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Towards the final Readout

» Prototype readout far too expensive (and clumsy)
for O(40k) channels.

» Better: ASICs close to SiPMs for signal collection and
digitization.
Requirements:
» Large dynamic range (MIPs as well as e.m. showers).
» Low rate.
» SiPM calibration (temperature variations!).
» Multiplexed digital output because of very many channels.

=» Very similar requirements as for calorimeters at the ILC.
=» Look at Calice AHCAL design.
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Towards the final Readout

Calice AHCAL readout board (144 channels)
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Towards the final Readout

Two working ASICs for Calice readout (very similar properties):
» SPIROC (v.2e), OMEGA/IN2P3-CNRS

» KLaus$ (v.5), Uni Heidelberg

HV T =
I HG Integrator Shaper
< /.
<
% (=) ADC [+
al 4
ZS LG Integrator Shaper Energy information
Gain selection J].\ HG/LG select
''''''''' / timing information
JL trigger \ Hit JL
Input stage J]-/ logic TDC —7—
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Towards the final Readout

Two working ASICs for Calice readout (very similar properties):
» SPIROC (v.2e), OMEGA/IN2P3-CNRS

» KLaus$ (v.5), Uni Heidelberg

» Both ASICs are suitable (may even have too much functionality).

=» Going to evaluate the KLauS chip from Heidelberg.

Open question:

» Integration into very different layout of SHiP ECAL.
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High-Precision Layers

Two MicroMegas chambers with 18 x 18 cm? active area.

» Each MicroMegas contains a double-layer with x and y strips,
mounted on one absorber plate.

» Strip pitch = 500 pym =» 360 strips in each view.
» Readout with custom ASICs (APV) and external trigger.
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Main Open Questions

SiPM-WLS fibre coupling:

» Secure, efficient and repeatable coupling.
Some ideas (e.g. diffusors), but more R&D needed.

SiPM Readout:
» Main difficulty: Dynamic range MIP — EM shower

» Try to use an existing ASIC and possibly adapt existing
electronic.

Mechanics:

» Integration of scintillators and absorbers.
Keep in mind the size!
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Conclusions

SplitCAL for the SHiP experiment

» Absorber-scintillator sandwich for energy measurement.
» Long scintillating strips with WLS fibre readout.
» Light readout with SiPMs, large dynamic range required.

» High-precision layers for photon directions
» MicroMegas, similar to new ATLAS muon chambers.

Timeline for SHiP

» Decision for approval awaited for 2020.
» |n case of approval: Start planned for 2026.

IR 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027
LHC
SPS

SHIP / BDF Comprehensive design & 1st prototypi Design and prototyping
Milestones 1P CDS|ESPH TDR7/PRR

@ rrismat Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019



T — R

@ PRiSMA* Rainer Wanke, DUNE Near Detector Workshop, DESY, Oct 22nd, 2019



Test Beam Results for High-Precision Layers

Average number of measured particles:
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Test Beam Results for High-Precision Layers

Shower width (excluding single-particle events).

>
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Good agreement between measurement and simulation,
only some additional noise seen in real data.

Average standard deviation of particle shower [cm]

Average standard deviation of particle shower [cm]

Absorber material in front [X_0]
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Test Beam Results for High-Precision Layers

Measured hit distributions:

» Absolute distributions agree fairly well,
considering the difficulty to simulate the beam profile.
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Test Beam Results for High-Precision Layers

Measured hit distributions:

» Better: adjusted position = mean(2"d MM) — mean(1st MM)
=» again very good agreement apart from residual noise.

0.2 Xo 2.1 Xo 5.7 Xo
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