

Scintillating Tracker Design overview

I. Kreslo

DUNE ND Workshop 23 Oct 2019

Reference documents:

- 1. **Design and construction of the MicroBooNE Cosmic Ray Tagger system**MicroBooNE Collaboration (C. Adams (Harvard U.) et al.). JINST 14 (2019) no.04, P04004; arXiv:1901.02862
- 2. A Novel Cosmic Ray Tagger System for Liquid Argon TPC Neutrino Detectors
 M. Auger et al., (U. Bern, AEC & Bern U., LHEP) et al., Instruments 1 (2017) no.1, 2; arXiv:1612.04614
- 3. Multi-channel front-end board for SiPM readout
 M. Auger et al., (Bern U., LHEP & U. Bern, AEC). JINST 11 (2016) no.10, P10005; arXiv:1606.02290

Designed as Cosmic Ray Tagger (CRT) for MicroBooNE and SBN-ND detectors

Tracker module assembly concept

Tracker strip structure

Scintillator: USMS-03 (PS+PTP+POPOP)

Reflective surface (UNIPLAST technology)

WLS fibers: Kuraray Y11(200)MS, 1mm diameter

Optical glue: ESA 7250 polysiloxane compound

SiPM: Hamamatsu S12825-050P

2 SiPMs per strip

Tracker module structure

16 strips per module

Module length: 1.8m to 4.5m

Module width: 0.96m & 1.8m

Module thickness: 20 mm

Aluminum case (2 mm thick covers)

Robust, self-supporting

Tracker modules ready for Bern — FNAL trip

Tracker module measured coordinate resolution (left-right weighting method)

Front-end electronic board (FEB)

Bias voltage 40-90 V, individually adjustable for each of the 32MPPCs

Amplifying and shaping of the MPPC output pulse on each of the 32 channels

Discriminating the shaped signal at a configurable level from 0 to 50 photo-electrons

Signal coincidence from each pair of WLS fibers => trigger

External event validation from other FEB(s) (allows X-Y coincidence)

Time stamp w.r.t. external reference (GPS PPS and BNB RWM), accuracy 1.3 ns RMS

Data buffer for 1024 events

Efficient Ethernet-based back-end communication

Firmware update over Ethernet

Front-End Board Rev3

All required FEBs for existing panels are produced and tested.

Front-End Module (Board)

Front-End Board Analog readout performance Local X-Y coincidence

Data rate can be reduced by factor of 5 with local coincidence

Ring cables, no termination, driven by 3-state buffers

Xout 150 ns ____

Every local trigger: if there is input during 160 ns:

Trigger readout else:

Reset and start over

Dead time reduced by factor >10

Front-End Module (Board) Analog, trigger and timers

Two timers with separate reference inputs

1.3 ns time stamp accuracy

Time resolution: beam hits seen by SBN-ND

Tracker module Performance summary

Muon detection efficiency	95% to 99%
Coordinate resolution	< 2 cm (2D)
Time tag accuracy	2.8 ns RMS (electronics: 1.3 ns)
Trigger latency	22 us
Amplitude dynamic range	100 p.e. => 3 x MIP Optional: 500 p.e. => 15 x MIP
S/N ratio for MIP	Up to 120
Practical threshold	400 keV

Tracker module manipulation and tools required

Vacuum suction jig: < 0.2 bar working pressure

Module weight 50 to 180 kg

Tracker modules packing and transport

Not too fragile, withstands standard transport (car, ship, train)

uBooNE	SBND	ProtoDUNE 3x1x1
--------	------	-----------------

L,mxW,m		L,m x W,m		L,m x	W,m
1.85 x 1.8	8 pc	1.8 x 1.8	2 pc	1.8 x	1.8 4 pc
2.3 x 1.8	12 pc	2.8 x 0.94	34 pc		
2.6 x 1.8	18 pc	3.6 x 1.8	51 pc		
3.5 x 1.8	10 pc	4.5 x 1.8	56 pc		
3.65 x 1.8	16 pc				
4.0 x 1.8	3 рс				
4.1 x 1.8	6 pc				

Total: 73 modules Total: 143 modules Total: 4 modules

Area: 395 m^2 Area: 880 m^2 Area: 13 m^2 (1-d coverage) (1-d coverage)

Backup slides

Timing resolution of the 4-m long scintillating bar Measured with 60-ps 400-nm laser pulse

Event time resolution ranges from 1.7 ns (near end) to 6 ns (far end)

Front-End Board concept Multiple FEB readout

Communication: L2 Ethernet (minimum overhead)

No Collision Detection => deterministic!

Host interrogates — FEB answers every 100 ms

Proprietary protocol FEBDTP:

Configuration Health check Data transfer

Example tracker: Signal distribution

Equipment is distributed over standard 19" racks

44U Rack

Example tracker wall structure: power distribution

Example tracker wall structure: Reference signals distribution

