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Motivation

● Neutron kinetic energy is generally not visible in LAr 
TPCs
● Small (~20%) fraction of neutron KE shows up in detector 

via neutron re-interactions

● Neutrons in the 10s to 100s MeV are a significant 
source of neutrino energy misreconstruction

● Neutron production in ν-Ar scattering is highly 
uncertain

→ Measuring neutron energy spectrum in ND could 
constrain our missing energy corrections at FD
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Reminder: basic premise
● Assuming neutron comes from 

primary vertex, start and end 
positions are measured

● Vertex time comes from charged 
particle hits in ECAL, correcting 
for TOF back to vertex

● Use neutron TOF to determine 
its momentum

● This works in any detector with 
fast timing and 3D position 
reconstruction, i.e. MPD ECAL 
or 3DST
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Simulation details

● Left: time of flight as a function of true neutron kinetic energy 
and lever arm

● Right: Expected neutron fractional kinetic energy resolution 
for 0.7ns timing resolution



Chris Marshall5

Simulation details

● Detector hall consists of rock, LAr TPC, Gas TPC + ~300t ECAL + 
100t cylindrical magnet (geometry created by Eldwain with NDGGD)

● Includes >6kt of rock, which is enough to ensure that neutron and 
photon rock backgrounds are correct (see backups)

Rock events only Everything but rock

Z (cm) Z (cm)

Y
 (

cm
)

Y
 (

cm
)



Chris Marshall6

Signal and background
● Signal is νμ CC interaction in gas TPC, with a fiducial 

volume >50cm from the edge of the active region
● Overlay background events ±1μs from signal, and reconstruct 

entire spill, with hit timing resolution in the ECAL of ±0.7 ns
● 770 rock and 120 detector hall ν interactions per spill at 1.2 

MW FHC, simulated separately nd overlaid
● 380 rock and 60 hall interactions at 1.2MW RHC
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Reconstruction

● Voxylize ECAL energy deposits in active plastic, into 
2x2cm2 squares in the transverse plane (5mm layers)

● Cluster energy deposits by looking for hit voxyls that 
are spatially isolated (>5cm) from other hit voxyls, 
with at least 3 MeV visible energy per cluster

Photon-induced Neutron-induced
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Out of the box RHC (no cuts)
● Backgrounds are due to 

correlated (produced by 
signal neutrino interaction), 
and uncorrelated (produced 
by some other neutrino 
interaction that happens to be 
in-time) activity

● At low reconstructed energy, 
TOF→∞, so the window for 
accidental background 
becomes long

● At high reconstructed energy, 
TOF→d/c, and backgrounds 
descended from π± dominate
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Correlated backgrounds

● Mostly due to charged pions 
produced in a gas TPC 
neutrino interaction that exit 
the gas, scatter, and knock out 
a neutron

● Neutron travels some distance 
in the ECAL, and scatters

● Cluster position can be 
correlated with charged track 
direction exiting HPgTPC
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Uncorrelated backgrounds

● Mostly due to in-time 
neutrino interactions in the 
ECAL itself, or in the 
magnet (as illustrated)

● Neutron enters ECAL, and 
scatters

● Cluster time can be 
correlated with other in-time 
activity in the ECAL 
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Distance to charged track cut
● Draw a straight line 

from each TPC 
charged track, and 
determine distance of 
closest approach to 
neutron candidate

● Correlated 
backgrounds are 
generally close to 
charged track vectors
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Distance and Δt to ECAL veto cut

● Signal is flat in Δt to random ECAL activity, peak around 6m is because most 
pile-up is upstream-entering, and most signal neutrons are downstream, and 
thus ~6m apart

● Background is generally close in time and space to other ECAL activity and 
can be vetoed with almost no signal loss

Signal Pile-up
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Cluster isolation cut
● Neutrons typically 

scatter multiple times
● For signal, these scatters 

are along the direction 
from the vertex to the 
first scatter

● For backgrounds, they 
are not, so cut on other 
clusters

● Highly correlated with 
charged track cut, hence 
the shape
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Selection efficiency

● Selection efficiency is ~40% 
with all cuts applied

● Photon rejection eliminates 
~20% of signal, but much of 
this is due to de-excitation 
photons, which give poor 
energy resolution anyway

● Other cuts are very efficient
● Optional additional 

restriction: consider only the 
forward hemisphere (further 
reduces many backgrounds)
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Sample purity: no cuts

● Out of the box purity is 
~10-30%

● Huge backgrounds 
from correlated 
activity, especially at 
high reconstructed 
energy

● Huge background from 
pile-up at low 
reconstructed energy
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Sample purity: photon cut

● Require proton-like 
cluster (rejects γs)
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Sample purity: charged track cut

● Require proton-like 
cluster (rejects γs)

● Require large distance 
from TPC tracks 
(rejects correlated)
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Sample purity: charged track cut

● Require proton-like 
cluster (rejects γs)

● Require large distance 
from TPC tracks 
(rejects correlated)

● Require no in-time 
ECAL activity near 
neutron cluster (rejects 
uncorrelated)
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Sample purity: isolation cut

● Require proton-like 
cluster (rejects γs)

● Require large distance 
from TPC tracks 
(rejects correlated)

● Require no in-time 
ECAL activity near 
neutron cluster (rejects 
uncorrelated)

● Require isolated 
neutron candidate
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Sample purity: leading neutron only

● Reconstruct only the 
earliest neutron scatter 
in each event

● Removes “duplicate” 
reconstruction

● Somewhat reduces 
correlated 
backgrounds, which 
are likelier to produce 
multiple candidates
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Sample purity: forward neutron only

● Suppresses 
uncorrelated 
backgrounds at low 
energy

● Increases purity, 
especially at high 
energy (there aren't 
high-energy, backward 
neutrons)
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Energy resolution: low KE

● Very good energy resolution when reconstructed neutron 
scatter is the first one

● But due to the high passive fraction, ~50% of the events are 
rescatters 
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Energy resolution: high KE

● At higher energies, resolution gets somewhat worse, up to ~40% for 
first scatter

● Fraction of rescatter events plateaus at ~60% at high energy
● Could be improved by increasing CH/passive ratio
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FHC vs. RHC: efficiency

● Efficiency of each cut is basically identical in FHC and 
RHC

FHC RHC
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FHC vs. RHC: purity

● Purity is somewhat higher in RHC, due to
● Less pile-up due to lower antineutrino total cross section
● Somewhat less correlated background due to fewer charged 

hadrons, on average, in antineutrino events

FHC RHC
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FHC vs. RHC: spectra

● More high-energy neutrons in antineutrino scattering, 
due largely to CCQE νp→μ+n

FHC RHC
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Conclusions

● Neutron reconstruction from TOF is possible in MPD ECAL, 
with ~40% efficiency and ~40% (50%) purity in FHC (RHC) 
mode

● Can further improve purity by looking at forward events 
only, or looking at leading neutron only, up to ~60-70%

● But energy resolution is poor, and biased toward low neutron 
KE, primarily due to missing the initial neutron interaction
● This could be improved by reducing the passive fraction, or by 

adding a (10s cm) fully-active inner ECAL

● This measurement is interesting and worth pursuing as is – 
but is it worth re-optimizing the ECAL design to improve it?
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Next steps

● Rahul is preparing a technical note describing the 
analysis and results
● Desired for CDR? In what form?

● Code is available on github/cmmarshall
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Backup



Chris Marshall30

Advantages of MPD ECAL vs. 3DST
● Feasibility of neutron TOF 

measurement has been 
demonstrated in 3DST

● Two main advantages of 
pursuing neutron TOF using 
MPD ECAL
● Neutrons produced in ν-Ar 

interactions → directly applicable 
to ν-Ar modeling of FD

● Low density of gas TPC → lever 
arm of several meters, compared to 
O(1m) scattering length in 3DST 
→ improved energy resolution
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Disadvantages of ECAL vs. 3DST

● Often miss neutron scatters that 
occur in passive absorber of 
ECAL → poor energy reco

● Long lever arm → long TOF → 
more beam pile-up problems
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Rock background: how much rock?

● Simulated 2m thick rock 
on top and bottom of 
hall, and 4m upstream, 
no downstream rock

● Plot shows all vertex 
positions – note the 
beam divergence is non-
negligible over this 
region

● Where are the vertices 
that produce neutron 
scatters in the ECAL?
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How much rock is enough?
ν vertices producing ECAL activity

● Most of the vertices 
that produce ECAL 
neutrons are very 
near the detector hall

● Expected, as ~1m 
rock will attenuate 
neutrons
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How thick rock do we need to worry 
about?

● Distance between neutrino interaction vertex that produces neutron hits in ECAL 
and edge of hall

● 2m on sides, and 4m upstream, is sufficient, maybe we underestimate by few %
● Integrating, we expect ~10 neutron hits in the ECAL per spill, i.e. 1 per μs – this is 

going to be sub-dominant

Upstream rock Top/bottom rock
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Hall-originating event vertices

● First, position of all 
interactions in 
detector hall
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Hall-originating event vertices

● Position of neutrino 
interaction for events 
that produce neutron 
candidates in ECAL

● Predominant 
background source is 
ECAL itself

● Second is the magnet, 
especially upstream

● Most downstream parts 
of LAr also contribute
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Distance to ECAL activity
(>50 MeV reco only)

● Most pile-up is 
reconstructed at very 
low energy
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Kink track angle

● Maximum kink angle
● Some gas-induced 

non-primary neutrons 
are correlated with 
interactions in the 
TPC which produce 
large kinks
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