DEEP UNDERGROUND NEUTRINO EXPERIMENT

Neutron reconstruction from TOF in MPD ECAL

Rahul Sahay, UC Berkeley Chris Marshall, LBNL DESY ND workshop 22 October, 2019

Motivation

- Neutron kinetic energy is generally not visible in LAr TPCs
 - Small (~20%) fraction of neutron KE shows up in detector via neutron re-interactions
- Neutrons in the 10s to 100s MeV are a significant source of neutrino energy misreconstruction
- Neutron production in v-Ar scattering is highly uncertain

→ Measuring neutron energy spectrum in ND could constrain our missing energy corrections at FD

Reminder: basic premise

Measure interaction vertex time from muon hits in ECAL

Measure neutron "endpoint" from scatter, i.e. $n+{}^{12}C \rightarrow p+X$

- Assuming neutron comes from primary vertex, start and end positions are measured
- Vertex time comes from charged particle hits in ECAL, correcting for TOF back to vertex
- Use neutron TOF to determine its momentum
- This works in any detector with fast timing and 3D position reconstruction, i.e. MPD ECAL or 3DST

Simulation details

Time of flight (ns)

1000

900

800

700

600

500

400

300

200

100

0.5

Neutron kinetic energy (MeV)

- Left: time of flight as a function of true neutron kinetic energy and lever arm
- Right: Expected neutron fractional kinetic energy resolution for 0.7ns timing resolution

Neutron fractional energy resolution

Simulation details

- Detector hall consists of rock, LAr TPC, Gas TPC + ~300t ECAL + 100t cylindrical magnet (geometry created by Eldwain with NDGGD)
- Includes >6kt of rock, which is enough to ensure that neutron and photon rock backgrounds are correct (see backups)

5

Signal and background

- Signal is v_{μ} CC interaction in gas TPC, with a fiducial volume >50cm from the edge of the active region
- Overlay background events $\pm 1\mu s$ from signal, and reconstruct entire spill, with hit timing resolution in the ECAL of ± 0.7 ns
- 770 rock and 120 detector hall v interactions per spill at 1.2 MW FHC, simulated separately nd overlaid
- 380 rock and 60 hall interactions at 1.2MW RHC

Reconstruction

- Voxylize ECAL energy deposits in active plastic, into 2x2cm² squares in the transverse plane (5mm layers)
- Cluster energy deposits by looking for hit voxyls that are spatially isolated (>5cm) from other hit voxyls, with at least 3 MeV visible energy per cluster

Out of the box RHC (no cuts)

- Backgrounds are due to correlated (produced by signal neutrino interaction), and uncorrelated (produced by some other neutrino interaction that happens to be in-time) activity
- At low reconstructed energy, TOF → ∞, so the window for accidental background becomes long
- At high reconstructed energy, TOF \rightarrow d/c, and backgrounds descended from π^{\pm} dominate

.....

Correlated backgrounds

- Mostly due to charged pions produced in a gas TPC neutrino interaction that exit the gas, scatter, and knock out a neutron
- Neutron travels some distance in the ECAL, and scatters
- Cluster position can be correlated with charged track direction exiting HPgTPC

Uncorrelated backgrounds

- Mostly due to in-time neutrino interactions in the ECAL itself, or in the magnet (as illustrated)
- Neutron enters ECAL, and scatters
- Cluster time can be correlated with other in-time activity in the ECAL

Distance to charged track cut

 Draw a straight line from each TPC charged track, and determine distance of closest approach to neutron candidate

 Correlated
 backgrounds are generally close to charged track vectors

Distance and Δt **to ECAL veto cut**

- Signal is flat in ∆t to random ECAL activity, peak around 6m is because most pile-up is upstream-entering, and most signal neutrons are downstream, and thus ~6m apart
- Background is generally close in time and space to other ECAL activity and can be vetoed with almost no signal loss

Cluster isolation cut

- Neutrons typically scatter multiple times
- For signal, these scatters are along the direction from the vertex to the first scatter
- For backgrounds, they are not, so cut on other clusters
- Highly correlated with charged track cut, hence the shape

.....

Selection efficiency

- Selection efficiency is ~40% with all cuts applied
- Photon rejection eliminates ~20% of signal, but much of this is due to de-excitation photons, which give poor energy resolution anyway
- Other cuts are very efficient
- Optional additional restriction: consider only the forward hemisphere (further reduces many backgrounds)

Sample purity: no cuts

- Out of the box purity is ~10-30%
- Huge backgrounds from correlated activity, especially at high reconstructed energy
- Huge background from pile-up at low reconstructed energy

Sample purity: photon cut

 Require proton-like cluster (rejects γs)

Sample purity: charged track cut

- Require proton-like cluster (rejects ys)
- Require large distance from TPC tracks (rejects correlated)

Chris Marshall

Sample purity: charged track cut

- Require proton-like cluster (rejects γs)
- Require large distance from TPC tracks (rejects correlated)
- Require no in-time ECAL activity near neutron cluster (rejects uncorrelated)

Sample purity: isolation cut

- Require proton-like cluster (rejects γs)
- Require large distance from TPC tracks (rejects correlated)
- Require no in-time ECAL activity near neutron cluster (rejects uncorrelated)

NATIONAL LABORATOR

• Require isolated neutron candidate

Sample purity: leading neutron only

- Reconstruct only the earliest neutron scatter in each event
- Removes "duplicate" reconstruction
- Somewhat reduces correlated backgrounds, which are likelier to produce multiple candidates

Sample purity: forward neutron only

- Suppresses uncorrelated backgrounds at low energy
- Increases purity, especially at high energy (there aren't high-energy, backward neutrons)

NATIONAL LABORATOR

rrrrr

21

Energy resolution: low KE

 $0 < T_n < 50 \text{ MeV}$

 $50 < T_n < 100 \text{ MeV}$

- Very good energy resolution when reconstructed neutron scatter is the first one
- But due to the high passive fraction, ~50% of the events are rescatters

Energy resolution: high KE

 $400 < T_n < 450 \text{ MeV}$

NATIONAL LABORATOR

200 < T_n < 250 MeV

 At higher energies, resolution gets somewhat worse, up to ~40% for first scatter

.....

- Fraction of rescatter events plateaus at ~60% at high energy
- Could be improved by increasing CH/passive ratio

FHC vs. RHC: efficiency

• Efficiency of each cut is basically identical in FHC and RHC

RFR

NATIONAL LABORATOR

mm

FHC vs. RHC: purity

- Purity is somewhat higher in RHC, due to
 - Less pile-up due to lower antineutrino total cross section
 - Somewhat less correlated background due to fewer charged hadrons, on average, in antineutrino events

FHC vs. RHC: spectra

• More high-energy neutrons in antineutrino scattering, due largely to CCQE $vp \rightarrow \mu^+n$

Conclusions

- Neutron reconstruction from TOF is possible in MPD ECAL, with ~40% efficiency and ~40% (50%) purity in FHC (RHC) mode
- Can further improve purity by looking at forward events only, or looking at leading neutron only, up to ~60-70%
- But energy resolution is poor, and biased toward low neutron KE, primarily due to missing the initial neutron interaction
 - This could be improved by reducing the passive fraction, or by adding a (10s cm) fully-active inner ECAL
- This measurement is interesting and worth pursuing as is but is it worth re-optimizing the ECAL design to improve it?

Next steps

- Rahul is preparing a technical note describing the analysis and results
 - Desired for CDR? In what form?
- Code is available on github/cmmarshall

Advantages of MPD ECAL vs. 3DST

- Feasibility of neutron TOF measurement has been demonstrated in 3DST
- Two main advantages of pursuing neutron TOF using MPD ECAL
 - Neutrons produced in v-Ar interactions → directly applicable to v-Ar modeling of FD
 - Low density of gas TPC → lever arm of several meters, compared to O(1m) scattering length in 3DST
 → improved energy resolution

Disadvantages of ECAL vs. 3DST

KE = 100 MeV, 20 modules, 300cm lever arm

- Often miss neutron scatters that occur in passive absorber of ECAL → poor energy reco
- Long lever arm → long TOF → more beam pile-up problems

NATIONAL LABORATOR

Rock background: how much rock?

- Simulated 2m thick rock on top and bottom of hall, and 4m upstream, no downstream rock
- Plot shows all vertex positions – note the beam divergence is nonnegligible over this region
 - Where are the vertices that produce neutron scatters in the ECAL?

.....

32

How much rock is enough? v vertices producing ECAL activity

- Most of the vertices that produce ECAL neutrons are very near the detector hall
- Expected, as ~1m rock will attenuate neutrons

How thick rock do we need to worry about?

- Distance between neutrino interaction vertex that produces neutron hits in ECAL and edge of hall
- 2m on sides, and 4m upstream, is sufficient, maybe we underestimate by few %
- Integrating, we expect ~10 neutron hits in the ECAL per spill, i.e. 1 per μ s this is going to be sub-dominant

Hall-originating event vertices

• First, position of all interactions in detector hall

Hall-originating event vertices

- Position of neutrino interaction for events that produce neutron candidates in ECAL
- Predominant
 background source is
 ECAL itself
- Second is the magnet, especially upstream
- Most downstream parts of LAr also contribute

Distance to ECAL activity (>50 MeV reco only)

 Most pile-up is reconstructed at very low energy

Kink track angle

- Maximum kink angle
- Some gas-induced non-primary neutrons are correlated with interactions in the TPC which produce large kinks

