# "Design \& Analysis of Pressure Vessel for HPgTPC Detector" 

## 6th DUNE Near Detector Workshop-22nd-Oct-2019

Prashant Kumar<br>Vikas Teotia, Sanjay Malhotra

Bhabha Atomic Research Centre (BARC), Trombay, India

## Outline

- Introduction and Layout of HPgTPC Pressure Vessel Detector
- Components of Pressure Vessel
- Allowable stress (ASME, Section II, Part D) for PV Materials and corresponding thickness
- Maximum Allowable Stress for AL 5083 Series
- Design of Elliptical Head (Appendix 1, ASME Section VIII, Div 1)
- Reinforcement Calculation for opening in Ellipsoidal Head (UG-37)
- Stresses in Vessel supported on Two Saddles
- Bolted Flange Design for Shell and Head as per ASME Section VIII Division 1 / Appendix 2
- 3D FEM Analysis for HPgTPC Pressure Vessel with distributed mass (300 Ton, ECAL)
- Future Work


## Introduction and Layout of HPgTPC Pressure Vessel Detector



## Components of Pressure Vessel



## Allowable S for PV Materials \& Corresponding Thickness



## Maximum Allowable stress for AL 5083 Series

|  | Maximum Allowable Stress, MPa (Multiply by 1000 to Obtain kPa ), for Metal Temperature, ${ }^{\circ} \mathrm{C}$, Not Exceeding |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | -30 to 40 | 65 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 275 | 300 | 325 | 350 | 375 | 400 | 425 | 450 | 475 |
| 1 | 61.4 | 61.4 | 60.1 | 50.3 | 42.3 | 29.1 | 18.3 | 7.95 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 2 | 66.9 | 66.9 | 66.1 | 56.6 | 42.1 | 29.0 | 18.4 | 7.91 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 3 | 46.2 | 46.2 | 45.9 | 42.9 | 38.3 | 29.0 | 17.9 | 6.66 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 4 | 78.6 | 78.6 | ... | ... | ... | ... | Plate, |  |  |  | B-209 | ... |  |  | A95083 |  | 0 |  |
| 5 | 76.5 | 76.5 | $\ldots$ | ... | ... | ... | Plate, sh |  |  |  | B-209 | ... |  |  | A95083 |  | 0 |  |
| 6 | 73.8 | 73.8 | ... | ... | ... | ... | Plate, sher |  |  |  | B-209 | ... |  |  | A95083 |  | 0 |  |
| 7 | 68.9 | 68.9 | $\ldots$ | ... | ... | ... | Plate, st |  |  |  | B-209 | ... |  |  | A95083 |  | 0 |  |
| 8 | 64.1 | 64.1 | ... | ... | ... | ... | Plate, st |  |  |  | B-209 | ... |  |  | A95083 |  | 0 |  |
| 9 | 78.6 | 78.6 | ... | ... | ... | ... | Plate, st |  |  |  | B-209 | ... |  |  | A95083 |  | H112 |  |
| 10 | 76.5 | 76.5 |  | ... | ... | ... | Plate, |  |  |  | B-209 | ... |  |  | A95083 |  | H112 |  |
| 11 | 86.9 | 86.9 |  |  | ... | ... | Plate, |  |  |  | B-209 | ... |  |  | A95083 |  | H321 |  |
| 12 | 80.7 | 80.7 |  | ... | $\cdots$ | ... | Plate, |  |  |  | B-209 | ... |  |  | A95083 |  | H321 |  |
| 13 | 73.8 | 73.8 | ... | ... | ... | ... | Bar, rod | shapes |  |  | B-221 | ... |  |  | A95083 |  | 0 |  |
| 14 | 78.6 | 78.6 | ... | ... | ... | ... | Bar, rod | shapes |  |  | B-221 | ... |  |  | A95083 |  | H111 |  |
| 15 | 73.8 | 73.8 | $\ldots$ | ... | ... | ... | Bar, rod | shapes |  |  | B-221 | ... |  |  | A95083 |  | H112 |  |
| 16 | 73.8 | 73.8 | ... | ... | ... | ... | Smls. e | r. tube |  |  | B-241 | ... |  |  | A95083 |  | 0 |  |
| 17 | 78.6 | 78.6 | $\ldots$ | ... | ... | ... | Smls. e | r. tube |  |  | B-241 | ... |  |  | A95083 |  | H111 |  |
| 18 | 73.8 | 73.8 | ... | ... | ... | ... | Smis.e | r. tube |  |  | B-241 | ... |  |  | A95083 |  | H112 |  |
| 19 | 76.5 | 76.5 |  |  |  |  | Dle \& h | d forg |  |  | B-247 | ... |  |  | A95083 |  | H111 |  |
| 20 | 73.8 | 73.8 |  | ... | ... | ... | Dle \& | d forg |  |  | B-247 | ... |  |  | A95083 |  | H112 |  |
| 21 | 75.2 | 75.2 |  | ... | ... | ... | Dle \& $h$ | d forg |  |  | B-247 | ... |  |  | A95083 |  | H111 |  |
| 22 | 75.2 | 75.2 | ... | ... | ... | ... | Dle \& | d forg |  |  | B-247 | ... |  |  | A95083 |  | H112 |  |

## Design of Ellipsoidal Head (Appendix 1, Section VIII, Div 1)



Reference: Theory and Design of Pressure Vessels by John F. Harvey

## Design of Elliptical Head (Appendix 1, VIII, Div 1) / Cont....

$$
\mathrm{t}=\frac{\mathrm{PDK}}{2 \mathrm{SE}-0.2 \mathrm{P}} \quad K=\frac{1}{6}\left[2+\left(\frac{D}{2 h}\right)^{2}\right]
$$

$$
\mathrm{D} / 2 \mathrm{~h}=5725 /(2 * 2000)=1.43
$$

$$
\mathrm{K}=0.67
$$

$$
\mathrm{t}=24 \mathrm{~mm}
$$

$$
\text { Crown radius }=\mathrm{K} * \mathrm{D}
$$

$$
=0.67 * 5725
$$

$$
=3836 \mathrm{~mm}
$$

| S <br> $\mathbf{N}$ | Stresses | Calcul <br> ated <br> Values | Allowable <br> Values | Re <br> mar <br> ks |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $\sigma_{\mathrm{L}}=\sigma_{\mathrm{h}}$ <br> (At Crown) | 85 MPa | 86.9 <br> MPa | Pass |
| 2 | At <br> Equat <br> or | $\sigma_{\mathrm{L}}$ | 60 <br> MPa | 86.9 <br> MPa |



| Table 1-4.1 <br> Values of Factor K |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D/2h | 3.0 | 2.9 | 2.8 | 2.7 | 2.6 | 2.5 | 2.4 | 2.3 | 2.2 | 2.1 | 2.0 |
| K | 1.83 | 1.73 | 1.64 | 1.55 | 1.46 | 1.37 | 1.29 | 1.21 | 1.14 | 1.07 | 1.00 |
| D/2h | 1.9 | 1.8 | 1.7 | 1.6 | 1.5 | 1.4 | 1.3 | 1.2 | 1.1 | 1.0 | ... |
| $K$ | 0.93 | 0.87 | 0.81 | 0.76 | 0.71 | 0.66 | 0.61 | 0.57 | 0.53 | 0.50 | ... |

## Reinforcement Calculation for opening in Ellipsoidal Head (UG-37)

Assumption: There is no Nozzle wall's contribution
Dp: 2000 mm
$\mathrm{d}: 1000 \mathrm{~mm}$
$\mathrm{t}: 27 \mathrm{~mm}$
$\mathrm{t}-\mathrm{tr}$ : Thickness available in head
tr: thickness required for a seamless sphere of radius $\mathrm{K} 1 * \mathrm{D}$
Where, D is shell diameter ( 5725 mm ) and K 1 is 0.66
Radius of sphere: $\mathrm{K} 1 * \mathrm{D}=0.66 * 5725=3778.5 \mathrm{~mm}$

$\operatorname{tr}: P R /(2 S E-0.2 P)=16.5 \mathrm{~mm}$
So, $A($ Required area $)=d^{*} \operatorname{tr} * F=1000 * 16.5 * 1=16,500 \mathrm{~mm} 2$

## Available area:

1. In Head, $\mathrm{A} 1=$ larger of $\left[\mathrm{d}\left(\mathrm{E} 1 * \mathrm{t}-\mathrm{F}^{*} \operatorname{tr}\right), 2 \mathrm{t}\left(\mathrm{E} 1 * \mathrm{t}-\mathrm{F}^{*} \operatorname{tr}\right)\right]=[1000 *(27-16.5), 2 * 27 *(27-16.5)]=[10,500 \mathrm{~mm} 2,567 \mathrm{~mm} 2]=10,500 \mathrm{~mm} 2$
2. $\mathrm{A} 2=\mathrm{A} 3=\mathrm{A} 41=\mathrm{A} 43=0$ (No nozzle)
3. A42 = Area available in outward weld in pad element $=\operatorname{leg} 2 * \mathrm{fr} 2=12 * 12 * 1=144 \mathrm{~mm} 2$
4. A5 = Area available in pad element $=2 *(488 * 12)=11,712 \mathrm{~mm} 2$

Total area available $=10,500+144+11,712=\mathbf{2 2 , 3 5 6} \mathbf{~ m m} 2$
Total available > Total required area ..............Opening is adequately reinforced

## Stresses in Horizontal Vessel supported on Two Saddles

It is based on linear elastic mechanics considering failure modes as excessive deformation and elastic instability


## Following stresses are evaluated:

- Longitudinal bending stress (Compression/ tension) at midspan \& at location of saddle $\qquad$ by the overall bending of the vessel
- Tangential shear stress at the location of saddle
- Circumferential bending stress at the horn of saddle

By the transmission of the loads on the supports

- Additional tensile stress in the head used as stiffener


## Stresses in Horizontal Vessel supported on Two Saddles (Cont...)

Assumption: Vessel as an overhanging beam subjected to a uniform load due to the weight of the vessel and its contents.
Shear Force at Saddle $T=\frac{Q(L-2 a)}{L+\frac{4 h_{2}}{3}}$


Vessel Weight: 25 Ton (Approx.) Vessel Load per Saddle (Q): 13 Ton

Mean Shell Radius (Rm): 2880 mm Saddle contact angle: 150 degree


Head height (h2): 2000 mm
A (or 'a'): 1000 mm (should be less than $0.25^{*} \mathrm{~L}=1323 \mathrm{~mm} \Rightarrow$ Limit Value for locating the saddle
L: Tangent to tangent length $=5192+2 * 50=5292 \mathrm{~mm}$

M1: 247 X E+4 Kg-mm
M2: 189 X E+4 Kg-mm
T: $\quad 5377 \mathrm{Kg}$

ECAL Weight: 300 Ton not considered in this calculation
It will be considered in further calculations based on design of its fitment to the Vessel.

## Longitudinal, Shear \& Circumferential Stresses in Vessel

## Longitudinal Stresses:

1. Longitudinal membrane plus bending stresses in the cylindrical shell between the supports

$$
\sigma_{1}=\frac{P R_{m}}{2 t}-\frac{M_{2}}{\pi R_{m}^{2} t}=40.98 \mathrm{MPa}>\text { At the Top of the Shell }
$$ $\sigma_{2}=\frac{P R_{m}}{2 t}+\frac{M_{2}}{\pi R_{m}^{2} t}=41.02 \mathrm{MPa}>$ At the bottom of the Shell

2. Longitudinal stresses in the cylindrical shell at the Support Locations (Depends upon rigidity of the shell at the support) Shell is considered as suitably stiffened because support is sufficiently close i.e. satisfy A (or $\boldsymbol{a}$ ) $<=\mathbf{0 . 5} \mathbf{R m}$ ( $\mathbf{1 4 4 0 m m}$ )
$\sigma_{3}=\frac{P R_{m}}{2 t}-\frac{M_{1}}{\pi R_{m}^{2} t}=41.11 \mathrm{MPa}>$ At the Top of the Shell
$\sigma_{4}=\frac{P R_{m}}{2 t}-\frac{M_{1}}{\pi R_{m}^{2} t}=41.17 \mathrm{MPa}>$ At the Top of the Shell
Acceptance Criteria: All four Longitudinal stresses $\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4}$ are less than $S * E\left(86.9^{*} 1=86.9 \mathrm{MPa}\right)$
None of the above are negative, thus not required to check for compressive stresses.

## Longitudinal, Shear \& Circumferential Stresses in Vessel

## Shear Stresses:

The shear stress in the cylindrical shell without stiffening ring(s) and stiffened by an elliptical head, is a maximum at Points E and F.

$$
\theta=150^{\circ} \quad \beta=\frac{7 \pi}{12} \quad \alpha=0.95 * \beta=1.74 \mathrm{rad}
$$

## Table 4.15.1

Stress Coefficients For Horizontal Vessels on Saddle

$$
\tau_{3}=\frac{K_{3} Q}{R_{m} t}=0.6 \mathrm{MPa} \quad>\text { In Cylindrical Shell }
$$ Supports

$K_{3}=0.47$

$$
\tau_{3}^{*}=\frac{K_{3} Q}{R_{m} t_{h}}=0.8 \mathrm{MPa}>\text { In the Formed Head }
$$

$K_{4}=0.3$

$\sigma_{5}=\frac{K_{4} Q}{R_{m} t_{h}}+\frac{P R_{i}}{2 t_{h}}\left(\frac{R_{i}}{h_{2}}\right)=151.54 \mathrm{MPa} \quad$ Not under allowable limit, 108 MPa
Maximum Shear Stress Location at point E \& F

## Acceptance Criteria:

$$
\text { For } t_{h}=40 \mathrm{~mm}, \sigma_{5}=94 \mathrm{MPa}
$$

$\tau_{3}$ shall not exceed $0.6 * S(0.6 * 86.9=52.14 \mathrm{MPa})$ $\tau_{3}^{*}$ shall not exceed $0.6^{*} \mathrm{Sh}$

Thus, Accepted

## Longitudinal, Shear \& Circumferential Stresses in Vessel

## Circumferential Stresses:

(a) Maximum circumferential bending moment: the distribution of the circumferential bes support is dependent on the use of stiffeners at the saddle location. Cylindrical shell without a stiffening ring: the maximum circumferential bending moment is

$$
M_{\beta}=K_{7} * Q * R_{m} \quad K_{7}=\frac{K_{6}}{4} \quad \text { when } \frac{a}{R_{m}} \leq 0.5
$$

$$
\begin{aligned}
& K_{6}=\frac{\frac{3 \cos \beta}{4}\left(\frac{\sin \beta}{\beta}\right)^{2}-\frac{5 \sin \beta \cos ^{2} \beta}{4 \beta}+\frac{\cos ^{3} \beta}{2}-\frac{\sin \beta}{4 \beta}+\frac{\cos \beta}{4}-\beta \sin \beta\left[\left(\frac{\sin \beta}{\beta}\right)^{2}-\frac{1}{2}-\frac{\sin 2 \beta}{4 \beta}\right]}{2 \pi\left[\left(\frac{\sin \beta}{\beta}\right)^{2}-\frac{1}{2}-\frac{\sin 2 \beta}{4 \beta}\right]} \\
& \begin{array}{l}
M_{\beta}=11.2 \mathrm{E}+6 \mathrm{~N}-\mathrm{mm}
\end{array} \\
& \text { (b) Width of the cylindrical shell that contributes to } \\
& \text { the strength of the cylindrical shell at the saddle location. B. M: Shell } \\
& \text { without stiffeners } \\
& x_{1}, x_{2} \leq 0.78 * \sqrt{R_{m} * t}(247.64 \mathrm{~mm}) \\
& \begin{array}{ll}
\mathrm{x}=247.64+200=447.64 & \begin{array}{l}
x_{1}=x_{2}=50 \mathrm{~mm} \\
\text { (Which is less than a or } \mathrm{A})
\end{array} \quad \mathrm{b}=400 \mathrm{~mm}
\end{array}
\end{aligned}
$$



Locations of Max Circumferential Normal Stresses in the Cylinder

## Longitudinal, Shear \& Circumferential Stresses in Vessel

## Circumferential Stresses:

(c) Circumferential stresses in the cylindrical shell without stiffening ring(s)
1.The maximum compressive circumferential membrane stress in the cylindrical shell at the base of the saddle support

$$
\sigma_{6}=\frac{K_{5} * Q * k}{t\left(b+x_{1}+x_{2}\right)}=5 \mathrm{MPa} \quad K_{5}=\frac{1+\cos \alpha}{\pi-\alpha+\sin \alpha \cos \alpha}=0.67
$$

## 2.The circumferential compressive membrane plus bending stress at Points $\mathbf{G}$ and $\mathbf{H}$

$$
\sigma_{7}^{*}=\frac{-Q}{4 t\left(b+x_{1}+x_{2}\right)}-\frac{12 K_{7} Q R_{m}}{L t^{2}}=\mathbf{1 5 0} \mathbf{M P a} \quad \text { For } \mathrm{L}<8 * R_{m}(\text { Satisfy }) \quad K_{7}=0.25
$$

3.The stresses $\sigma_{6}$ and $\sigma_{7}^{*}$ may be reduced by adding a reinforcement or wear plate at the saddle location that is welded to the cylindrical shell.

$$
\sigma_{6, r}=\frac{-K_{5} Q k}{b_{1}\left(t+n t_{r}\right)}
$$

$\sigma_{7, r}^{*}=\frac{-Q}{4\left(t+n t_{r}\right) b_{1}}-\frac{12 K_{7} Q R_{m}}{L\left(t+n t_{r}\right)^{2}}=44.21 \mathrm{MPa}$




Locations of Max Circumferential Normal Stresses in the Cylinder

$$
\mathrm{n}=\min \left[\frac{S_{r}}{s}, 1.0\right] \quad b_{1}=500
$$

$\mathrm{t}_{\mathrm{r}}=$ reinforcing plate thickness $=35 \mathrm{~mm}$
$\mathrm{t}=$ shell thickness $=35 \mathrm{~mm}$

## Longitudinal, Shear \& Circumferential Stresses in Vessel

## Acceptance Criteria for Circumferential Stress:

1. The absolute value of $\sigma_{6}$ shall not exceed $S$
2. The absolute value of $\sigma_{7}^{*}, \sigma_{6, r}, \sigma_{7, r}^{*}$ shall not exceed $1.25^{*} \mathrm{~S}$

| S. <br> $\mathbf{N}$ | Stresses | Calculated <br> Values | Allowable Values | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| 1 | $\sigma_{6}$ | 5 MPa | $\mathrm{S}: 86.9 \mathrm{MPa}$ | Pass |
| 2 | $\sigma_{7}^{*}$ | 150 MPa | $1.25 * \mathrm{~S}: 108 \mathrm{MPa}$ | Fail |
| 3 | $\sigma_{7, r}^{*}$ | 44 MPa | $1.25 * \mathrm{~S}: 108 \mathrm{MPa}$ | Pass |


| S. N | Particulars | Values |
| :--- | :--- | :--- |
| $\mathbf{1}$ | Reinforcement Plate Thickness, tr | 35 mm |
| 2 | Width of Reinforcement Plate, b1 | 500 mm |
| To be welded near the Support |  |  |
|  |  |  |



## Sizing Calculation of Bolts \& Verification of Shell Flange Stresses

## Bolt Size Calculation:

| Gasket Details (Table 2-5.1, ASME 2013, Section VIII - Div 1) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| S.N | Particulars | Values |  |  |
| 1 | Material | Elastomer with cotton fabric |  |  |
| 2 | Gasket factor (m) | 1.25 |  |  |
| 3 | Min. Design Seating Stress y, $\mathrm{MPa}$ | 2.8 MPa |  |  |
| Maximum Allowable stress for Bolt, Non-Ferrous (Table 3) |  |  |  |  |
| S. N | ASME Specification | UNS No | Class | Size |
| 1 | SB-211 | A92014 | T6 | 3-200 mm |
| 2 | Mini Tensile Stress |  | 450 M |  |
| 3 | Mini Yield Stress |  | 380 M |  |
| 4 | Max Allowable Stress |  | 89.63 M |  |
| 5 | $\mathrm{Sa}=$ allowable bolt stress at atmospheric temperature |  |  |  |
| 6 | $\mathrm{Sb}=$ allowable bolt stress at design temperature |  |  |  |
| 7 | $\mathrm{Sa}=\mathrm{Sb}=89.6 \mathrm{MPa}$ |  |  |  |



Integral-Type Flange

## Sizing Calculation of Bolts \& Verification of Shell Flange Stresses

| S.N | Particulars | Values |
| :---: | :---: | :---: |
| 01 | Minimum gasket contact width (N) | 38 mm |
| 02 | B | 5725 mm |
| 03 | $G_{I D}$ | 5765 mm |
| 04 | $G_{O D}$ | 5841 mm |
| 05 | $b_{0}$ (basic gasket seating width from sketch 1a, column II, Table 2-5.2) | $\mathrm{N} / 2=19 \mathrm{~mm}(>6 \mathrm{~mm})$ |
| 06 | b (effective gasket or joint-contact-surface seating width) | $2.5 * \sqrt{b_{0}}=10.9 \mathrm{~mm}$ |
| 07 | $W_{m 1}=$ Minimum required bolt load for operating condition $=$ $0.785 * G^{2} * \mathrm{P}+2 \mathrm{~b} * 3.14 * \mathrm{G} * \mathrm{~m} * \mathrm{P}$ | $\begin{aligned} & 27080.444 \mathrm{KN} \\ & \operatorname{Or}\left(2.7^{*} 10^{7}\right) \mathrm{N} \end{aligned}$ |
| 08 | $W_{m 2}=$ Minimum required bolt load for gasket seating $=3.14 * \mathrm{~b}^{*} \mathrm{G}^{*} \mathrm{y}$ | $5.58 * 10^{5} \mathrm{~N}$ |
| 09 | $\begin{aligned} & \text { Minimum total required bolt area }\left(\boldsymbol{A}_{\boldsymbol{m}}\right) \\ & =\operatorname{Max}\left(A_{m 1}, A_{m 2}\right)=\operatorname{Max}\left(\frac{W_{m 1}}{S_{b}}, \frac{W_{m 2}}{S_{a}}\right) \end{aligned}$ | $\underline{3,02,237 \mathrm{~mm}^{2}}$ |
| 10 | Bolt Selected | M64 X 140 |
| 11 | Minimum Diameter of Bolt Required | 53 mm |
| 12 | Root Area as per TEMA for M64 | $2467.15 \mathrm{~mm}^{2}$ |
| 13 | Total C.S.A of bolt Provided ( $\mathbf{A}_{\mathbf{b}}$ ) | $3,45,401 \mathrm{~mm}^{2}$ |
| 14 | Provided Diameter of Bolt | 56 mm |
| 15 | Design Check | $\mathrm{A}_{\mathrm{b}}>\mathrm{A}_{\mathrm{m}}$ Okay |
| 16 | Flange Design Bolt Load $W=\frac{\left(A_{m}+A_{b}\right) S_{a}}{2}$ | 28418.604 KN |

## Sizing Calculation of Bolts \& Verification of Shell Flange Stresses

| S. N | Particulars | Values |
| :--- | :--- | :--- |
| $\mathbf{1}$ | Bolt circle diameter (C) | 6250 mm |
| $\mathbf{2}$ | Bolt Spacing Provided, (3.14*C)/n | 141 mm |
| $\mathbf{3}$ | Minimum Bolt Spacing required as per <br> TEMA | 139.7 mm |
| $\mathbf{4}$ | Edge Distance (E) | 66.68 mm |
| $\mathbf{5}$ | Radial Distance (R) | 84.14 mm |

METRIC BOLTING DATA - RECOMMENDED MINIMUM
(All Dimensions in Millimeters Unless Noted)


Bolt Spacing Requirement Including Spanner width

| $\underset{d_{\mathrm{B}}}{\text { Bolt Size }}$ | Threads |  | Nut Dimensions |  | $\begin{gathered} \text { Bolt } \\ \text { Spacing } \\ \text { B } \end{gathered}$ | Radial Distance Rh$\qquad$ | $\begin{gathered} \text { Radial } \\ \text { Distance } \\ \mathbf{R}_{\mathrm{T}} \\ \hline \end{gathered}$ | $\begin{gathered} \text { Edge } \\ \text { Distance } \\ \hline \end{gathered}$ | $\underset{d_{B}}{\text { Boit Size }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pitch | $\begin{aligned} & \text { Root Area } \\ & \left(\mathrm{mm}^{2}\right) \end{aligned}$ | Across Flats | Across Corners |  |  |  |  |  |
| M12 | 1.75 | 72.398 | 21.00 | 24.25 | 31.75 | 20.64 | 15.88 | 15.88 | M12 |
| M16 | 2.00 | 138.324 | 27.00 | 31.18 | 44.45 | 28.58 | 20.64 | 20.64 | M16 |
| M20 | 2.50 | 217.051 | 34.00 | 39.26 | 52.39 | 31.75 | 23.81 | 23.81 | M20 |
| M22 | 2.50 | 272.419 | 36.00 | 41.57 | 53.98 | 33.34 | 25.40 | 25.40 | M22 |
| M24 | 3.00 | 312.748 | 41.00 | 47.34 | 58.74 | 36.51 | 28.58 | 28.58 | M24 |
| M27 | 3.00 | 413.852 | 46.00 | 53.12 | 63.50 | 38.10 | 29.00 | 29.00 | M27 |
| M30 | 3.50 | 502.965 | 50.00 | 57.74 | 73.03 | 46.04 | 33.34 | 33.34 | M30 |
| M36 | 4.00 | 738.015 | 60.00 | 69.28 | 84.14 | 53.97 | 39.69 | 39.69 | M36 |
| M42 | 4.50 | 1018.218 | 70.00 | 80.83 | 100.00 | 61.91 |  | 49.21 | M42 |
| M48 | 5.00 | 1342.959 | 80.00 | 92.38 | 112.71 | 68.26 |  | 55.56 | M48 |
| M56 | 5.50 | 1862.725 | 90.00 | 103.92 | 127.00 | 76.20 |  | 63.50 | M56 |
| M64 | 6.00 | 2467.150 | 100.00 | 115.47 | 139.70 | 84.14 |  | 66.68 | M64 |
| M72 | 6.00 | 3221.775 | 110.00 | 127.02 | 155.58 | 88.90 |  | 69.85 | M72 |
| M80 | 6.00 | 4076.831 | 120.00 | 138.56 | 166.69 | 93.66 |  | 74.61 | M80 |
| M90 | 6.00 | 5287.085 | 135.00 | 155.88 | 188.91 | 107.95 |  | 84.14 | M90 |
| M100 | 6.00 | 6651.528 | 150.00 | 173.21 | 207.96 | 119.06 |  | 93.66 | M100 |

## Sizing Calculation of Bolts \& Verification of Shell Flange Stresses

## Flange Dimensions and Loads acting on Flange



## Sizing Calculation of Bolts \& Verification of Shell Flange Stresses

Flange Moments and Integral Flange Factors
Flange Stresses

| S. N | Particulars |  | Values |
| :---: | :---: | :---: | :---: |
| 1 | $\mathrm{M}_{\mathrm{D}}=\mathrm{H}_{\mathrm{D}} * \mathrm{~h}_{\mathrm{D}}$ |  | $4.83 \mathrm{E}+09$ |
| 2 | $\mathrm{M}_{\mathrm{T}}=\mathrm{H}_{\mathrm{T}} * \mathrm{~h}_{\mathrm{T}}$ |  | $2.04 \mathrm{E}+08$ |
| 3 | $\mathrm{M}_{\mathrm{G}}=\mathrm{H}_{\mathrm{G}} * \mathrm{~h}_{\mathrm{G}}$ |  | $1.07 \mathrm{E}+08$ |
| 4 | $\mathrm{M}_{\mathrm{O}}=$ |  | $5.14 \mathrm{E}+09$ |
| 5 | Flange <br> Factors | $\mathrm{K}=\mathrm{A} / \mathrm{B}$ | 1.12 |
|  |  | T | 1.87 |
|  |  | U | 19.14 |
|  |  | Y | 17.42 |
|  |  | Z | 9.01 |
| 6 | $\mathrm{h}_{\mathrm{o}}$ | $\sqrt{B g_{0}}=$ | 447.63 |
| 7 | F |  | 0.75 |
| 8 | V |  | 0.14 |
| 9 | f |  | 1 |


| S. <br> N | Particulars | Under <br> operating <br> Condition | Allowable <br> Values | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | Longitudinal Hub <br> Stresses, $S_{H}=\frac{f M_{0}}{L g_{1}^{2} B}$ | 60.67 MPa | 108 MPa | Pass |
| 2 | Radial Flange Stress, <br> $S_{R}=\frac{(1.33 t e+1) M_{0}}{L t^{2} B}$ | 54.00 MPa | 86.9 MPa | Pass |
| 3 | Tangential Flange Stress,, <br> $S_{T}=\frac{Y M_{0}}{t^{2} B}-Z S_{R}$ | 40.23 MPa | 86.9 MPa | Pass |

## All three Stresses are within Allowable limit

## 3D FE Analysis with distributed mass (300 Ton, ECAL)

## Design Conditions

| S. | Particulars | Values |
| :--- | :--- | :--- |
| N |  |  |
| 1 | Internal Pressure | 10 bar (1 MPa) |
| 2 | Material | AL 5083 |
| 3 | ID of Shell | 5725 mm |
| 4 | Head Type | Ellipsoidal (D/2h = 1.43) |
| 5 | Manhole ID | 1000 mm |
| 6 | Distributed Mass | 300 Ton |
| 7 | Shell Thickness | 40 mm |
| 8 | Nozzle Height | Zero |



## 3D FEM Analysis with distributed mass (300 Ton, ECAL)



Maximum Deflection in Shell: $\mathbf{8 . 8 1 7} \mathbf{~ m m}$
Saddle Contact Angle: 120 degree

## 3D FEM Analysis with distributed mass (300 Ton, ECAL)



This region, too, showing Maximum Von-Mises Stress is near Saddle Horn higher stresses due to sharp corner

## Future Work

- FE Analysis to avoid Protection against Plastic Collapse (locally and globally) As per


## ASME, Section VIII, Div 2, Part 5

- FE Analysis Analysis with distributed mass (ECAL: 300 Ton) in different sitting conditions with reference to pressure vessel.
- In case, present saddle location needs to change then stiffening condition will have to re-evaluated.
- Welding difficulties with Al alloy and its way forward
- Weld Design and its Classifications at various locations of vessel
- Saddle Components such as Web, base plate, Anchor Bolts, Ribs to be designed
- Fabrication Plan and Transportation to be worked out


## Thank You For

## Your Kind Attention



## Load transfer to saddle by tangential shear stresses in cylindrical shell


(b) SHELL STIFFENED BY RINOS

ADELACENT TO SADOLE RI


