DUNE Near Detector Overview

Alfons Weber for the DUNE ND Design Group

DESY, 21-Oct-2019

General Setup

- LBNF/DUNE will consist of
 - An intense 1.2 MW upgradeable ν -beam fired from Fermilab
 - A massive 68 kt (40kt instrumented) deep underground LAr detector in South Dakota and a large Near Detector at Fermilab
 - A large international collaboration

Physics Program

- Neutrino Oscillations
 - Search for leptonic CP violation
 - Determine neutrino mass ordering
 - Precision PMNS measurements

- Supernova Physics
 - Observation of time and flavour profile provides insight into collapse and evolution of supernova
 - Unique sensitivity to electron neutrinos

- Baryon number violation
 - Predicted by many BSM theories
 - LAr TPC technology well-suited to certain proton decay channels (e.g., $p\rightarrow K+\overline{\nu}$)
 - Δ (B-L) ≠ 0 channels accessible (*e.g.*, n \rightarrow \overline{n})

An international science collaboration

1106 collaborators from 184 institutions in 31 countries

Beam

- Proton beam energy 60-120 GeV
- Power
 1.2 MW → 2.4 MW
- Neutrinos and anti-neutrinos

DUNE Near Site

Near detector hall located 574 m from the target and 60 m below the surface

The DUNE Near Detector Complex

- Over the past 2 ½ years the DUNE collaboration has developed requirements and a concept design for the near detector complex
- Currently, the Near Detector Design Group is tasked with developing a reference design that meets all physics requirements
 - Deliver CDR by end of CY 2019
- I will present an overview of the requirements and then detail the current reference design

How to Measure Oscillations

Oscillation probabilities

$$P_{\nu_{\mu} \to \nu_{e}}(E_{\nu}) = \frac{\phi_{\nu_{e}}^{far}(E_{\nu})}{\phi_{\nu_{\mu}}^{far,no-osc}(E_{\nu})} = \frac{\phi_{\nu_{e}}^{far}(E_{\nu})}{\phi_{\nu_{\mu}}^{near}(E_{\nu}) * F_{far/near}(E_{\nu})}$$

Number of events/energy spectrum

Well known (1-2%)

$$\frac{dN_{\nu}^{det}}{dE_{\nu}} = \phi_{\nu_{\mu}}^{det}(E_{\nu}) * \sigma_{\nu_{\mu}}^{Ar}(E_{\nu})$$

In reality

$$\frac{dN_{\nu}^{det}}{dE_{rec}} = \int \phi_{\nu}^{det}(E_{\nu}) * \sigma_{\nu}^{target}(E_{\nu}) * T_{\nu_{\mu}}^{det}(E_{\nu}, E_{rec}) dE_{\nu}$$

- Folding of detector effects
 - Prevents (easy) cancellations of many systematic effects
 - Needs unfolding

Are there cancellations?

Oscillation signal

$$\frac{dN_{\nu_e}^{far}}{dE_v} / \frac{dN_{\nu_\mu}^{near}}{dE_v} = P_{\nu_\mu \to \nu_e}(E_\nu) * \frac{\sigma_{\nu_e}^{Ar}(E_\nu)}{\sigma_{\nu_\mu}^{Ar}(E_\nu)} * F_{far/near}(E_\nu)$$

Near muon/electron ratio

1-2% uncertainty

Small theo. uncertainty

$$\frac{dN_{\nu_e}^{near}}{dE_{\nu}} / \frac{dN_{\nu_{\mu}}^{near}}{dE_{\nu}} = \frac{\sigma_{\nu_e}^{Ar}(E_{\nu})}{\sigma_{\nu_{\mu}}^{Ar}(E_{\nu})} * \frac{\phi_{\nu_e}^{near}(E_{\nu})}{\phi_{\nu_{\mu}}^{near}(E_{\nu})}$$

- Need to know
 - Flux & cross section ratios
 - Far/near extrapolation

Not so small uncertainty

But in Reality

$$\frac{\frac{dN_{\nu_e}^{far}}{dE_{rec}}}{\frac{dN_{\nu_{\mu}}^{near}}{dE_{rec}}} = \frac{\int P_{\nu_{\mu} \to \nu_e}(E_{\nu}) * \phi_{\nu_{\mu}}^{near}(E_{\nu}) * F_{far/near}(E_{\nu}) * \sigma_{\nu_e}^{Ar}(E_{\nu}) * T_{\nu_e}^{far}(E_{\nu}, E_{rec}) dE_{\nu}}{\int \phi_{\nu_{\mu}}^{near}(E_{\nu}) * \sigma_{\nu_{\mu}}^{Ar}(E_{\nu}) * T_{\nu_{\mu}}^{near}(E_{\nu}, E_{rec}) dE_{\nu}}$$

- No cancellations
 - Unless you unfold
- Need to understand especially
 - Detector effects in near and far detector
 - Relation of visible to neutrino energy
 - Cross section ratios
 - Near to far flux extrapolation
- Flux normalisation cancels
 - Shape is more important

Overarching ND Requirements

O0: Predict the neutrino spectrum at the FD: The Near Detector (ND) must measure neutrino events as a function of flavor and neutrino energy. This allows for neutrino cross-section measurements to be made and constrains the beam model and the extrapolation of neutrino energy event spectra from the ND to the FD.

O0.1	Measure interactions on argon	Measure neutrino interactions on argon, determine the neutrino flavor, and measure the full kinematic range of the interactions that will be seen at the FD.
O0.2	Measure the neutrino energy	Reconstruct the neutrino energy in CC events and control for any biases in energy scale or resolution.
O0.3	Constrain the xsec model	Measure neutrino cross-sections in order to constrain the cross section model used in the oscillation analysis.
O0.4	Measure neutrino flux	Measure neutrino fluxes as a function of flavor and neutrino energy.
O0.5	Obtain data with different neutrino fluxes	Measure neutrino interactions in different beam fluxes in order to disentangle flux and cross sections and verify the beam model. (PRISM)
O0.6	Monitor the neutrino beam	Monitor the neutrino beam energy spectrum with sufficient statistics to be sensitive to intentional or accidental changes in the beam on short timescales.

Beyond vSM Physics

- The near detector facility will provide a very powerful system to study:
 - Boosted dark matter
 - Sterile neutrinos
 - Neutrino tridents

See: POND²

Physics Opportunities in the Near DUNE Detector Hall https://indico.fnal.gov/event/18430/overview

- Heavy Neutral Leptons
- millicharged particles
- Unknown, unknowns......
- More details in Silvia's talk later

Near Detector Complex

Four main components, working together:

- Liquid argon detector (ArgonCube)
- Downstream tracker with gaseous argon target (MPD)
- LAr and GAr systems can move to off-axis fluxes (PRISM concept)
- On-axis neutrino beam monitor with neutron detection capability (3DST-S+KLOE)
- High statistics constrains
 - Cross section & neutrino flux

Detector Functionality

Multi-pronged approach with complementary integration leading to tremendous robustness:

- v interactions on Ar
 - LAr provides v-Ar interaction as seen by FD
 - MPD provides v-Ar interactions with sign selection, very low thresholds, and minimal secondary interactions
- Integration
 - MPD is necessary to complete reconstruction of events in LAr detector
 - μ spectrometer
 - ECAL necessary to complete reconstruction of interactions in the HPgTPC (like collider detector)
 - Muon system to help with muon/pion seperation
- Beyond interactions on Ar: Extended capability in 3DST-S+KLOE
 - provides detailed fixed, on-axis beam monitoring
 - provides look at v-CH interactions with novel neutron detection capabilities

Flux & Event Rates @ ND570

Optimized CPV tune FHC On-axis 1.25 MW

Events/year in Fiducial volume

Detector	Target (Fid. mass t)	# ν _μ CC (X10 ⁶)
LAr	Ar (50)	80
HPgTPC	Ar (1)	1.5
3DST-S	CH (8)	12

Taking Data Off-axis

- The DUNE near detector complex will allow for off-axis running in order to accommodate the PRISM concept
 - Precision Reaction Independent Spectrum Measurement
- Flux varies as a function of detector transverse position
 - Pseudo-monochromatic beams can be formed by taking linear combinations of beam data at different off-axis positions
 - These can help in understanding of relationship between E_{ν} and E_{reco} and thus help deconvolve the flux and cross section uncertainties
 - Can predict oscillated neutrino event spectra at FD with reduced model dependence

PRISM

- Predict oscillated neutrino event spectra at FD with reduced model dependence
 - Form "oscillated" flux at near detector with linear combinations of off-axis data
 - Extrapolate to Far detector
 - Interaction model independent

Near Detector Hall

Detectors at Extreme Off-axis Position

Detector Systems

LAr Overview

- ArgonCube concept
- Pixelated readout to accommodate high rate (>5 evts/spill)
 - > 12 million pads
 - > ~2 billion voxels
- > Active volume:
 - > 5 m deep in beam direction and 3 m tall for hadronic shower containment.
 - > 7 m transverse to mitigate side muon spectrometer.
- Active mass ~ 150t
 - > 50t fiducial (3m X 2m X 6m)
 - Hadronic containment
- Divided into 35 modules:
 - > 1 m x 1 m x 3.5 m
 - > 50 cm drift, 50 kV max
- Can move off axis

Prototyping Activities

 Almost full size module in 2x2 cryostat

- Pixel ASIC
- Resistive shell TPC

LArPix-v2 64 channels, 25 mm²

Multi-Purpose Detector Overview

- High pressure (10bar) gas TPC + ECAL + SC magnet + μ tag
- Provides muon spectrometry for muons leaving LAr
 - LAr event containment
- Provides an independent, statistically significant event sample on Ar gas
 - Sign selection
 - Full 4π coverage
 - Very-low tracking threshold
 - Essentially no secondary interactions
 - Low density
- Can move off axis

MPD Capabilities

Low-energy protons

- GArSoft reconstructs event, outputs TPC hits
- TPC hits are assigned to proton candidate sets using RANSAC based algorithm
- Each proton candidate set is passed to a neural net trained on single proton events to predict KE

50 < T_n < 100 MeV

- The ECAL has neutron detection capability
- With time stamp from charged particle
 - Very good energy resolution when reconstructed neutron scatter is the first one
 - But due to the high passive fraction,
 ~50% of the events are re-scatters

Magnet: Superconducting 3-coil Helmholtz System with 2 Superconducting Bucking Coils

Magnet design concept

- Overarching requirements
 - Large acceptance for particles leaving LAr
 - Present minimal mass
- Central field = 0.5T
- Side coils at 2.5 m, shielding coils placed at 5 m from the magnet center in Z.
 - All coils have the same inner radius (3.5m)
 - Center and shielding coils are identical.
- Basic magnetic, cryostat and structural designs complete

High-Pressure gas TPC (HPgTPC)

Build copy of ALICE TPC reusing their wire chambers

Well established technology Vetted detector design

We expect ~ 2% dE/dx resolution based on PEP4 ALICE obtains 5-6%

A Simulated and Reconstructed ν_e Charged Current Event in the HPgTPC

$$\nu_e$$
 + Ar \rightarrow e- + π + + p + n

Neutron with p = 0.23 GeV/c at the P.V. not shown

ECAL

- Surrounds HPgTPC to detect photons and neutrons
- Plastic scintillator tiles & strips CALICE architecture
- SiPM readout now affordable due to recent significant cost reductions

Need for Muon System

- ECal thickness ~ 1 λ
- 1/3 of pions don't interact in ECal
- Solution
 - additional absorber
 - Muon system

3DST-S+KLOE Overview

- Provides precision on-axis monitoring of neutrino beam through rate, profile, and spectrum measurements
- Consists of
 - Active target (8t) consisting of
 3-dimensional plastic scintillator tracker
 - tracking
 - Atmospheric pressure TPCs or straws
 - KLOE EM calorimeter
 - Scintillator fiber + Pb
 - KLOE magnet system
 - 0.6T central field (SC magnet)
 - Return Fe
- Fixed on-axis position

3DST-S+KLOE Details

- Active scintillating target composed of 1x1x1cm³ scintillator cubes
 - 2.4 x 2.4 x 2 m³ total volume
 - fine-grained, isotropic tracking (proton tracking to ~300 MeV/c)
 - neutron tagging and spectrometry by time-of-flight
- Surrounded by tracking detectors and ECAL in magnetic field

High-performance beam monitor +

Independent physics program (v_{μ} + CH)

3DST-S+KLOE Capabilities

Precision on-axis flux monitor

 Sufficient rate, spectrometry capabilities, and transverse span

Neutron detection

- New capability in neutrino detectors
- Nascent capabilities in MINERvA show potential

• v-CH sample

- Cross check v-A modelling across A
- Connect to "historic" data sets
- Provides cross check on flux measurements with very different detector technology and capabilities

Comparison between Ingrid-like system and spectrometer.

Preliminary

sqrt(chi2)	4 modules One-side rate	Muon spectrometer
Beam targ. dens.	1.9	7.8
Beam offset x	0.7	6.7
Beam theta	0.2	19.9
Horn 1 X 0.5 mm	1.9	8.8
Horn 1 Y 0.5 mm	0.7	12.8
Horn 2 X 0.5 mm	0.2	9.9
Horn 2 Y 0.5 mm	0.4	6.3

Timeline

- May 2018: Conceptual design of ND
- May 2018: FD IDR
- July 2018: Completion of ProtoDUNE-SP construction
- July 2019: Commissioning of ProtoDUNE-DP
- Dec 2019: ND CDR
- Early 2020: baseline LBNF & DUNE-US (CD2/3a)
- Dec 2020: ND TDR, reviews
- 2021/22: ProtoDUNE running post LS2
- Aug 2024: Installation Module 1
- Aug 2025: Installation Module 2

Opportunities

- We are close to a CDR → Conceptual
 - Everything needs more thought, design, work,...
- Examples (incomplete)
 - Muon system
 - Muon/pion separation
 - Cosmic trigger
 - DAQ
 - LAr, MPD, ...
 - Trigger and timing
 - Beam, calibration, cosmic
 - Detectors
 - Pay attention to the talks!

Conclusions

- DUNE has developed a near detector reference design that has wide-ranging capability (calorimetric, spectrometer, PID, multiple target nuclei, off-axis measurements)
 - LAr, MPD (HPgTPC+ECAL+Magnet+μ tagger) and 3DST-S+KLOE
 - Basic technical/engineering foundations in place for most
- With these detectors and the LBNF beam, we will accumulate enormous statistics in all channels, including neutrino-electron elastic scattering
- Aggressive 3-pronged approach to CPV
- Opportunities to study the vSM, BSM physics and neutrino interaction physics are extensive

Thank You

BACKUPS

