

TRAC Experience Summary

Kyle Rader August 6, 2019

SBN Program Overview

- Short-Baseline Neutrino (SBN) Program consists of three components: SBN Near Detector, MicroBooNE, and SBN Far Detector
- Will be used to measure neutrino oscillations, in search of a fourth kind of neutrino, the sterile neutrino
- Project work focused on the SBN-ND

SBND

- The Short-Baseline Near Detector (SBND) will be housed in the new building 110 m away from the neutrino beam source
- 112 ton liquid argon time projection chamber (LArTPC)
- Consists of two anode planes on the ends and one cathode plane in the middle
- Major TPC components assembled at Fermilab
- Will be installed inside a cryostat built at CERN
- Includes cosmic ray tagger (CRT)

ATF

- Assembly Transport Frame will hold all major TPC components for assembly
- Current assembly work taking place in DZero Assembly Building (DAB)
- Used for transport from DAB to SBN-ND once the cryostat is installed
- Task: design an enclosure
 - Needs to incorporate a clean tent to protect from particulate matter
 - Needs to incorporate UV filtering due to UV sensitive components
 - Needs multiple access points for entry at various locations

ATF Components

- Consists of the base frame that the TPC components will be mounted to
- Has a removable upper side brace
- Includes six outriggers to provide structural integrity when the upper side brace is removed
- Existing clean tent from ANNIE will be modified to fit the desired dimensions of the ATF
- Clean tent made from Unistrut members
- Dimensions of frame without clean tent are approximately 19.75' high, 32' wide (including outriggers), and 17.75' deep

Current ATF State

UV Filter Sheets

- 2 mil polyester sheets
- 48" wide, 25' long rolls

Design Goals:

- Prioritize vertical over horizontal orientation of sheets
- Need to create permanent seams to join sheets
- Need to create removable seams for access points
- Must adhere to painted steel surface of the ATF
- Must adhere to surface of Unistrut members
- Include a secondary attachment method at areas of critical importance (the tops of most sheets)
- Must be completely sealed and cannot have any gaps/holes

Sheet Permanent Seam Concept

- 3M 9472LE adhesive transfer tape
- Best option for bonding polyester to either polyester, steel, or painted surfaces
- Purchased 1" wide tape for a large surface contact
- Acrylic adhesive
- Bond strength increases over time (e.g. bonding steel together for a 15 minute vs. 72 hour cure time increases 90° peel adhesion by 28.5%)

Sheet

Sheet Removable Seam Concept 1

- McMaster-Carr 9273K14 hook and loop with adhesive backing
- Purchased 1" wide Velcro for a large surface contact
- **Acrylic adhesive**
- Sheets where access is needed will be secured together with **Velcro strips**
- Sheets will be disconnected and rolled up when longer duration access is needed

Sheet

Sheet Removable Seam Concept 2

- Duraco 473105 magnetic tape with adhesive backing
- Tested .06" thick, .5" wide sample
- Acrylic adhesive
- Sheets where access is needed will be secured together with magnet strips
- Sheets will be disconnected and rolled up when longer duration access is needed

Sheet 2

Sheet

Secondary Attachment Concept

- Connections at top will have two attachment methods, providing extra insurance against the sheets falling off
- Primary attachment will be via 3M 9472LE transfer tape
- Secondary attachment will be via bolts through the sheet into channel nuts on Unistrut pieces
- Metal grommets will be added to sheets to reinforce holes

UV sheet

Testing Summary

- A test frame was built to hang the plastic with weights for durability testing
- Orientation 1 had two grommets on the Unistrut in a horizontal orientation
- Orientation 2 had transfer tape on the Unistrut in a vertical orientation
- The mass of each 25' long roll of plastic, including the cardboard tube, was 865 g
- A total clamp mass of around 2060 g was hung from the plastic
- The plastic remained attached and the connections unaffected for the duration of the one week test
- Pulling off both sheets was very difficult at the conclusion of the test

Clean Tent Design Decisions

- UV plastic sheets in a vertical orientation when possible
- Supported on the top with both transfer tape and grommets for a redundant attachment method
- Access panels removable with magnetic tape on the sides of the plastic sheets (2 strips needed for each interface)
- Adjacent, nonremovable plastic connected with transfer tape
- Grommets placed every 6" where utilized (this could be modified if needed)
- Transfer tape at all floor interfaces
- ANNIE frame design still in progress

Design – ANNIE Outside

 UV plastic: 5 rolls cut to 20', 1 cut to 20' & trimmed for door and above

Transfer tape: 58.8 yardsMagnetic tape: 15.7 yards

Grommets: 47 Unistrut: 0'

2 sets

Design – ANNIE Inside

UV plastic: 6 rolls cut to 20'

• Transfer tape: 40.2 yards

Magnetic tape: 41.4 yards

• Grommets: 47

Unistrut: 23'

2 sets

- Wall joined with transfer tape between panels and magnetic tape at edges and bottom
- Attached to the ATF and not ANNIE tent to allow the tent to retract

Design – ANNIE Side

 UV plastic: 2 rolls cut to 20', 2 cut to 20' & trimmed for door and above

Transfer tape: 33.7 yardsMagnetic tape: 16.9 yards

Grommets: 24 Unistrut: 11.5'

4 sets

 Assuming a door on each of the four sides

Design – ANNIE Ceiling

UV plastic: 3 rolls cut to 24'

Transfer tape: 38.4 yards

Magnetic tape: 0 yards

Grommets: 142

Unistrut: 0'

2 sets

- Transfer tape attachment with grommets at all edges
- UV plastic oriented parallel to longest edge

Design – Outriggers Outside

UV plastic: 6 rolls cut to 20'

• Transfer tape: 32.3 yards

Magnetic tape: 64.5 yards

Grommets: 37 Unistrut: 17.8'

2 sets

 Each door is a set of 3 panels of plastic joined with transfer tape

Design – Outriggers Inside

 UV plastic: 6 cut to 15' with the remaining trimmed to appropriate length for stage area

Transfer tape: 38.2 yardsMagnetic tape: 76.4 yards

Grommets: 74 Unistrut: 35.6'

2 sets

- Each door is a set of 3 panels of plastic joined with transfer tape
- UV plastic on top half has included extra to account for the stages

19

Design – Outriggers Side

UV plastic: 2 rolls cut to 20'

Transfer tape: 22.8 yards

Magnetic tape: 0'

Grommets: 10

• Unistrut: 4.2'

4 sets

Design – Outriggers Ceiling

UV plastic: 2 rolls cut to 18'

Transfer tape: 21.7 yards

Magnetic tape: 0'

• Grommets: 100

Unistrut: 29.4'

2 sets

- Transfer tape attachment with grommets at all edges
- UV plastic oriented parallel to longest edge
- Unistrut on outside of outriggers can be shared

Design – Main Ceiling

UV plastic: 5 rolls cut to 21'

Transfer tape: 27.3 yards

Magnetic tape: 51.0 yards

Grommets: 0 Unistrut: 0'

1 set

- **UV** plastic oriented parallel to **ANNIE** tent
- **Ceiling joined with transfer tape** between panels and magnetic tape at all four sides

22

Summary of Materials Needed

- UV plastic: 1821'
 - Currently have 65 rolls (1625')
 - Without splicing horizontally or vertically, 87 rolls are needed
 - Need to purchase 8 rolls if vertical splicing will be done (but not horizontal)
 - Need to purchase 22 rolls if no vertical or horizontal splicing will be done
 - No floors or extra for mistakes are included in these calculations
- Transfer tape: 712.5 yards (12 rolls @ 60 yards/roll)
 - \$25.66/roll -> \$307.92
 - Amount did not include in any splicing of UV plastic, as noted above
- Magnetic tape: 514.6 yards (16 rolls @ 100'/roll)
 - \$46.41/roll -> \$742.56 (price breaks available, but not published on website)
 - Alternate suppliers may be available
- Grommets (plus associated nuts, bolts, and channel nuts): 1030
 - \$20.95/1000, \$1.99/24 -> \$24.93 (does not include nuts, bolts, or channel nuts)
- Unistrut: 274.4'

SBN-ND

- The SBN-ND is a new construction building that will house the detector
- It contains all of the cryogenics necessary for the detector to operate (liquid nitrogen & argon)
- The detector will be housed in a pit inside the building
- The building was built such that the beam travels through the near center of the detector
- The large access door will allow entry by the ATF and the building crane will lower components into the cryostat

SBN-ND Interior

- The pit is roughly 34' deep from ground level
- Approximately 12' below ground level, there is a mezzanine level, which will house some cryogenics and computer systems
- The existing 3D CAD model of the building was inaccurate and missing a number of components
- The missing components proved challenging for the addition and modification of systems
- Ductwork that leads to the bottom of the pit cannot be located in the originally designed space due to conflicts with the cryogenics

SBN-ND Mezzanine Modeling: Steel System

SBN-ND Mezzanine Modeling: Duct System

27

SBN-ND Mezzanine Modeling: Environmental Sensors System

SBN-ND Mezzanine Modeling: Fire Alarm System

SBN-ND Mezzanine Modeling: Fire Protection Water System

SBN-ND Mezzanine Modeling: Lighting System

SBN-ND Mezzanine Modeling: Pit Electrical System

SBN-ND Mezzanine Modeling: Pit Lighting System

SBN-ND Mezzanine Modeling: Smoke Detector System

SBN-ND Mezzanine Modeling: Sump Pump System

SBN-ND Mezzanine Modeling: Full Model, My Parts, No Steel

SBN-ND Mezzanine Modeling: Full Model, My Parts

SBN-ND Mezzanine Modeling: Full Model

Thank You!

- Thank you to Fermilab for providing this opportunity
- Thanks to all that helped this summer on these projects!
 - Harry Cheung
 - Angela Fava
 - Don Friend
 - Cristobal Garces
 - Steve Hentschel
 - Lucas Kilmer
 - Nicola McConkey
 - John Najdzion
 - Anne Schukraft
 - Shishir Shetty
 - Joseph Zennamo

39