

3DST-S as a sub-system in DUNE ND

Guang Yang On behalf of the DUNE collaboration

DUNE ND hall

- DUNE ND will consist of a liquid argon detector, a gas argon TPC system which will be surrounded by ECAL and inside a magnetic volume and a 3D projection scintillator tracker.
- DUNE-PRISM is the baseline design.
- DUNE aims at measuring CP violation at five sigma with this ND system.

DUNE ND : 3D projection scintillator tracker (3DST)

- Plastic scintillator detector with 1 cm x 1 cm x 1 cm cubes \rightarrow Fully active
- Light collected by 3 wavelength shifting fibers
- Each cube coated with TiO2 to keep light entrapped inside the cube
- Read out by MPPC at 3 faces
- Combining with TPC and ECAL, it is named 3DST-S (3DST spectrometer).

Stony Brook University Synergy with T2K upgrade

- Functionally identical to the T2K super-FGD in T2K ND280
- Share the effort including hardware and software such as parts production, R&D, neutrino event reconstruction etc.

Super-FGD proto-type by T2K upgrade group

3DST-S

 3DST-S contains 3DST, TPC and ECAL inside a magnetic field (>0.6 T)

- Beam monitoring:
 - A 2.4m x 2.4m x 2m 3DST can provide daily event rate monitoring with <1% statistical error.
 - As a spectrometer, beam condition changes can be observed in the spectral distortion.
- Neutron tagging and energy measurement: With neutron detection capability, transverse momentum can be used to select hydrogen-enriched samples for both FHC and RHC.
- CH cross section measurement: This measurement can provide us a bridge to the world scintillator cross-section measurements, thus finer tuning the neutrino interaction modeling.

Stony Brook University

3DST performance

- Relatively high statistics with Carbon target
- Tracking particles over 4pi space

• •			0.5E
Low proton threshold			0.4
For one year			0.2 0.1 ar>
Channel	ν mode	$\bar{\nu}$ mode	
ν_{μ} CC inclusive	13.6×10^{6}	5.1×10^{6}	
CCQE	2.9×10^{6}	1.6×10^{6}	
CC π° inclusive	3.8×10^{6}	0.97×10^{6}	
NC total	4.9×10^{6}	2.1×10^{6}	0.8
ν_{μ} -e ⁻ scattering	1067	1008	0.6
ν_{μ} CC coherent	1.26×10^5	8.6×10^4	
ν_{μ} CC low- ν ($\nu < 250$ MeV)	1.48×10^{6}	8.8×10^{5}	0.4
ν_e CC coherent	2.1×10^{3}	719	
$\nu_e \text{ CC low-}\nu \ (\nu < 250 \text{ MeV})$	2.1×10^4	4.7×10^{3}	0.2
ν_e CC inclusive	2.5×10^{5}	0.56×10^{5}	
	1		0 200

07/29/19

Efficiency

0.9

3DST performance

- Super fast and high light yield
- Radiation length ~ 40 cm, TPC and ECAL needed in addition to 3DST
- ~100% charge ID for tracks below 3 GeV

Stony Brook University

Stony Brook University **Beam spectrum monitor**

2010)

Beam accidents happened before. •

MINOS ND low energy running

Target degradation: **Broken upstream** target fins

A. Holin, CERN CENF-ND meeting, Nov 2017

Unexpected horn Tilt discovered by Change in ND flux (due to corroded part)

Neutrino Selected Batch Energy Spectrum Stability (PQ and NQ)

Beam spectrum monitor

- The 3DST has the ability to detect FS particles.
- With the shape measurement over a time period, 3DST is sensitive to beam parameters.
- An example: With only muon energy measurement, 3DST provide good sensitivity to the beam condition changes.
- Major beam variations have been tested.

Stat. Error and detector effect (smearing + efficiency applied)

07/29/19

DPF 2019

Flux constraint with transverse variable

- Neutron energy can be measured with fast timing.
- Out-of-FV (fiducial volume) background can be controlled.
- With the neutron measurement, both FHC and RHC transverse variables can be measured:
 - tune the model
 - select FSI (final state interction) free samples.

Flux constraint with transverse variable

- Cut on missing Pt → Sample with less nuclear/FSI effects
- Improved energy resolution for flux determination
- RHC CCQE as an example
- Potentially expand-able to n and pi0 final state

400

300

200

CERN prototype

- 9216 cubes (48 width x 24 length x 8 height 1 x 1 x 1 cm^3 cubes)
- 1728 channels
- Ceramic type MPPCs and CITIROC-based electronics
- MPPCs calibrated with LED before the test beams.

- It was used in CERN charged particle beam test in 2018.
- Data are being analyzed.

Stony Brook University 3DST US-Japan prototype

- 8 (width) x 32 (length) x 8 (height) cubes
- 2048 cubes and 576 channels
- CITIROC-based electronics supported by the US-Japan Cooperative Research funds

3DST neutron beam test with a prototype

- A neutron beam test planned for the 3DST US-Japan prototype at LANL
- With TOF, neutron energy is known at a great precision

Conclusion

- 3DST-S is part of the DUNE ND reference design and will likely be on-axis.
- 3DST-S will provide various measurements including beam monitoring, flux measurement and neutrino interaction model tuning.

3DST performance

Stony Brook University

3DST performance

- Radiation length ~ 40 cm, for all pi0 and electron containment, may need downstream or side ECALs.
- 2 m depth 3DST contains 60% pi0 which deposits > 95% energy.

Stony Brook University

Stony Brook University

3DST performance

- Few percent resolution can be achieved for contained electrons.
- 15%-20% track momentum resolution
 with 0.4 T B-field in interested energy region.
- Good charge ID for tracks below 3 GeV.

Flux constraint with transverse variable

- Neutron energy can be measured with fast timing.
- Out-of-FV (fiducial volume) background can be controlled.

21/22

* Stony Brook University

Flux constraint with transverse variable

- With the neutron measurement, both FHC and RHC transverse variables can be measured:
 - tune the model
 - select FSI (final state interction) free samples.

