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DUNE: Deep Underground Neutrino Experiment

Do say: I love DUNE!, Don’t say: <anything> the DUNE experiment <anything else>
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Oscillations

2) Propagate as 
superposition of 
mass/energy  
eigenstates over 
experimental 
baseline (1300 km)

Pontecorvo–Maki–Nakagawa–Sakata

3) Projecting back to flavor 
eigenstates reveals a different 
flavor mixture.
(if |𝚫m2

ij| ≠ 0)

1) Interaction with matter in flavor 
eigenstate defined by charged 
lepton.

e.g. Neutrinos from accelerators created as 
muon neutrinos from pion and kaon decays



L. Pickering    7
Disappearance at the Far detector

● ‘Surviving’ muon neutrinos show characteristic 
oscillation shape.

● Use details of spectra to infer physics parameters of 
interest (mixing angles, mass differences, CPV phase)

● Similarly compare to ‘appeared’ electron spectra.
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Latest T2K 
disp. result

Mass-squared splitting

Mixing angle

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.171802
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An Oscillation Analysis (OA) in one slide

Predict neutrino flux 
from beam sim.

● Predict observables
● Data → constrain 

interaction physics

● Constrained prediction of 
oscillated observables

● Data → Infer oscillation 
probabilities

Appeared 𝜈e

Surviving 𝜈𝜇

ND, 𝜈𝜇

Arxiv: 1512 06148

https://arxiv.org/pdf/1512.06148.pdf
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Why are neutrino interaction models important?

● Observe event rate not neutrino flux

● Cannot perfectly reconstruct neutrino 
energy

● Require models to predict observables 
and infer oscillation features in true 
neutrino energy spectra

● Mis-modelling in reconstructed energy 
feed-down → biased parameter 
measurements.

Appeared 𝜈e
      flux

DUNE Preliminary
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Appeared 𝜈e 
selected 
event rate

What we want to understand

What we actually see

Need to 
understand this!
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Spotting a Problem
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DUNE-PRISM

● Neutrino beam from boosted 
pion and kaon decays:

○ peak-energy is lower when detector 
is physically away from neutrino 
beam axis

● A mobile near detector could 
take data in a range of neutrino 
fluxes without disrupting far 
detector data-taking

Beam

𝜈

𝜈K

𝞹

More
off axis (OA)

To SURF

DUNE Preliminary

Near Detector
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Improvise

● Problems in 
flux/interaction/detector 
modelling can be hard to 
deconvolve by single 
event rate measurement 
(e.g. on-axis (OA) only)

● Case study: 20% proton KE → neutron 
and apply plausible new xsec to 
make hard to see on axis.

On axis (OA)

DUNE Preliminary
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Improvise

● Problems in 
flux/interaction/detector 
modelling can be hard to 
deconvolve by single 
event rate measurement 
(e.g. on-axis (OA) only)

28 m Off-axis

DUNE Preliminary

● Case study: 20% proton KE → neutron 
and apply plausible new xsec to 
make hard to see on axis.

● But as you go off-axis…
○ The same combination of modelling problems unlikely to describe the data well.
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Sidestepping a Problem
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What Do We Really Want To Know?

Predict neutrino flux 
from beam sim.

● Predict observables
● Data → constrain 

interaction physics

● Constrained prediction of 
oscillated observables

● Data → Infer oscillation 
probabilities

Appeared 𝜈e

Surviving 𝜈𝜇

ND, 𝜈𝜇

Arxiv: 1512 06148

● Ultimately need a prediction of the FD observable event rate for a given 
oscillation.

● Can predict FD flux for any oscillation hypothesis with flux model, but energy 
feed-down means we can only predict observables with an interaction model...

● Can we use the ND data to tell us about the feed-down without invoking an 
interaction model?

https://arxiv.org/pdf/1512.06148.pdf
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Adapt
● Predict Near flux spectrum.
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Adapt
● Predict Near flux spectrum. 

● Can predict Far flux under 
various oscillation hypotheses

● Use Near flux energy spectrum 
at different off axis positions as a 
linear basis and solve:

● Each oscillation hypothesis 
yields a different set of 
weighting coefficients: 

X

=
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OscProb.js

T2K 2018
NOvA 2018
NuFit v4

http://ursaminorbeta.org.uk/neut/osc/osc.html
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Adapt
● If we can take an ND measurement 

with                                                             
then                   is the same as                
up to detector effects!

X = 
FD prediction

DUNE Preliminary

ND ‘data’
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Overcome
● Aim: Rearrange ND data to 

predict FD
○ Unknown XSec features 

automatically transferred
○ Minimize XSec dependence and 

take advantage of ND/FD flux 
cancellations

○ N/F detector differences must be 
included in any analysis

● Robust to mis-modelling in 
observable energy 
distribution as use near data 
to fill most of the far 
‘prediction’!

X
ND ‘data’

DUNE Preliminary

DUNE Preliminary
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Summary
● Problems in neutrino interaction models can be hard to see & fix with 

on-axis near detector only

● Comparing data taken in different neutrino energy spectra can 
illuminate such mis-modelling.

● Using linear combination of near detector data to make far detector 
predictions can result in an oscillation analysis that is robust to a large 
range of cross-section modelling problems.



Thanks for listening

L. Pickering    
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DUNE-PRISM Propagation
● Aim: Rearrange ND data to predict FD

○ Unknown XSec features automatically transferred
○ Minimize XSec dependence and take advantage of N/F flux cancellations
○ N/F detector difference unavoidable in any analysis

● In each systematic universe/fit step:
1. Select data at ND
2. Subtract ND backgrounds with MC prediction
3. Correct for differences in N/F selection, resolution, fiducial mass
4. Perform Flux match
5. Linearly combine ND data
6. Add FD Flux match MC correction
7. Add FD backgrounds with MC prediction
8. Evaluate GOF
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Selected ND Event Rate
● Taking more granular steps 

near on-axis can mitigate 
edge-effects in the selection.

○ Future: Optimize stop plan

LBL ND Selected
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Predicted Event Rate Off Axis
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ND Backgrounds

● Backgrounds that do not oscillate 
and vary differently as a function of 
off-axis position are subtracted 
before propagation.

● Most common:
a. Neutral Current (Use on-axis to constrain 

ND and FD NCBkg)
b. Wrong sign (worse in nubar-mode, use 

tracker to constrain WSBkg).
c. Intrinsic nue

● These will get added back into the 
Far prediction later.
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Selection Efficiency
● Must correct for differences in 

ND/FD selection efficiency.
● Want to avoid asking GENIE 

everywhere possible.
● Aim to develop data-driven 

geometric efficiency correction:
a. Throw away events outside 

acceptance ND-FD high acceptance 
union

b. Add MC events that are in FD but 
outside ND

✘

✘✔
✔ ✔
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Geometric Efficiency
● Preliminary work by Cris Vilela: 
● Random translation and 

rotation of energy deposits in 
selection volume
a. Suggests 95% of events can be 

corrected in a model-independent, 
data-driven way at the oscillation 
peak

b. As expected from Chris Marshalls 
ND acceptance studies.

c. Even higher fraction at lower 
energies.

https://indico.fnal.gov/event/20015/contribution/0/material/slides/0.pdf
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Flux Matching Correction
● Flux matching not perfect in 

general:
○ Especially at higher energy due to 

on-axis configuration

● Difference between ‘target’ and 
‘matched’ filled in with FD MC 
predictions.

○ This ‘filling in’ is the same as the 
tuned-prediction ‘dead-reckoning’ that 
makes the entire FD comparison in the 
standard analysis.

○ Here: Majority of FD prediction built with 
ND data.
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FD Backgrounds
● Add back in any sources of 

FD background that we 
removed before:

○ Oscillated wrong sign 
background (Can use 
nu-mode ND data to build 
nubar-mode FD wrong sign 
prediction).

○ NC Backgrounds (Use on-axis 
ND to understand NCBkg.(


