
Antonio Segura – University of Detroit Mercy
Supervisor: Bruno Coimbra – Fermilab
SIST/GEM Final Presentation
7 August 2019

Improving FERRY: Refactoring, 
Visualization, and Testing



To Improve the Frontier Experiments RegistRY 
(FERRY) meta-data management system
• Refactor Application Programming Interface (API) code to 

be standardized 
• Implement a visual interface for user ease of access
• Integrate an automated testing system to test APIs

Project Overview

8/7/19 Antonio Segura | Improving FERRY: Refactoring, Visualization, and Testing2



8/7/19 Antonio Segura | Improving FERRY: Refactoring, Visualization, and Testing3

Description of the Frontier Experiments RegistRY

• FERRY is a meta-database containing information about 
experiments, users, groups, and storage quotas 

• Replaced the usage of GUMS, VOMS, and Vulcan
• Works in collaboration with the SNOW 
• Primary used as an account registry system
• Accessible via API



8/7/19 Antonio Segura | Improving FERRY: Refactoring, Visualization, and Testing4

FERRY Database Schema



8/7/19 Antonio Segura | Improving FERRY: Refactoring, Visualization, and Testing5

FERRY as a RESTful API

• Representational State Transfer (REST) is an architectural 
style for Web based software services

• Services that conform to this architecture are called RESTful
Web Services

• These services allow requesting systems to access and
manipulate data that is transmitted

• FERRY is a RESTful service that returns data in the JSON 
format

• Several HyperText Transfer Protocol (HTTP) methods are 
included, such as GET, PUT, and DELETE



8/7/19 Antonio Segura | Improving FERRY: Refactoring, Visualization, and Testing6

FERRY API Call

The output is a JSON Object. In Python this can be
imported and turned into a nested dictionary/list



8/7/19 Antonio Segura | Improving FERRY: Refactoring, Visualization, and Testing7

Refactoring FERRY

FERRY was developed by several people and the code is 
inconsistent in several ways:
• Attributes ≠ Parameters
• Output is not consistent
• Style and strategies to create APIs not standard

The project requires rewriting of each API call to be 
standardized



8/7/19 Antonio Segura | Improving FERRY: Refactoring, Visualization, and Testing8

Refactoring FERRY (cont.)

BaseAPI handles:
• Connecting to the database host
• Database transactions
• Error calls
• Input



8/7/19 Antonio Segura | Improving FERRY: Refactoring, Visualization, and Testing9

Refactoring FERRY (cont.) 

Original API – 114 Lines

Refactored API – 59 Lines

• Shortened Code
• Better documented and organized
• Much easier to read and understand



8/7/19 Antonio Segura | Improving FERRY: Refactoring, Visualization, and Testing10

Developing a Visual Interface for FERRY –
Superset

• APIs are somewhat hard to decipher from a user 
standpoint

• User Interface (UI) would increase user ability to 
understand and use FERRY

• Initially wanted to create the UI from scratch
• Found open-source software from the Apache 

Software Foundation:



8/7/19 Antonio Segura | Improving FERRY: Refactoring, Visualization, and Testing11

Superset Dashboards



8/7/19 Antonio Segura | Improving FERRY: Refactoring, Visualization, and Testing12

Superset Querying



8/7/19 Antonio Segura | Improving FERRY: Refactoring, Visualization, and Testing13

Developing a Visual Interface for FERRY – Grafana

• The obvious alternative was a system already in
use: Grafana

• Since it is in use throughout Fermilab already,
Grafana has a secure authentication system set up

• No heavy memory usage
• Retains all of the good features from Superset



8/7/19 Antonio Segura | Improving FERRY: Refactoring, Visualization, and Testing14

Grafana Dashboards



8/7/19 Antonio Segura | Improving FERRY: Refactoring, Visualization, and Testing15

Grafana Editor



8/7/19 Antonio Segura | Improving FERRY: Refactoring, Visualization, and Testing16

FERRY Automated Testing 
• Refactored APIs and future additions require 

extensive unit testing to ensure their stability
• Manually testing would take unreasonably long,

with 99 API calls, and dozens of parameter 
combinations, both correct and incorrect

• Tavern is a testing plugin for Pytest in Python that is 
used to test RESTful APIs

• Runs automated tests, but cannot create tests for 
each API by itself.



8/7/19 Antonio Segura | Improving FERRY: Refactoring, Visualization, and Testing17

Tavern Test Structure for FERRY APIs
Call test creation 

script with 
desired API to test

Make API call to 
get parameters

Create Tavern files 
containing a test 
per combination

Execute Tests

Logged Output

Find all possible 
parameter 

combinations



8/7/19 Antonio Segura | Improving FERRY: Refactoring, Visualization, and Testing18

Conclusions

Overall we have made FERRY easier to use by:
• Making it easier to develop and read the code
• Creating a visual interface for user ease
• Building an automated testing system that will work

for all and future APIs

Future work:
• Create more APIs for user requirements
• Create more dashboards based on user 

requirements
• Tweak Tavern automation to be more versatile



8/7/19 Antonio Segura | Improving FERRY: Refactoring, Visualization, and Testing19

Acknowledgements
Special thanks to:

My supervisors Bruno Coimbra and Tanya Levshina; mentors
Carrie McGivern, Charlie Orozco, and Mehreen Sultana; 
Judy Nunez, Laura Fields, Sandra Charles, and the rest of 
SIST Committee for giving me this opportunity.

References:
• Bruno Coimbra. Ferry, What is Next. https://cdcvs.fnal.gov/redmine/attachments/

download/52614/Ferry20What%20Is%20Next.pdf
• Antonio Segura, Bruno Coimbra. Grafana Dashboards. https://tinyurl.com/VisualFerry
• Apache Software Foundation. Apache Superset. https://superset.incubator.apache.org/
• Tavern: Automated RESTful API Testing. https://taverntesting.github.io/
• Grafana Labs. Grafana. https://grafana.com/
• Wikipedia. Representational State Transfer.

https://en.wikipedia.org/wiki/Representational_state_transfer

This manuscript has been authored by Fermi Research Alliance, LLC 
under Contract No. DE-AC02-07CH11359 with the U.S. Department of 
Energy, Office of Science, Office of High Energy Physics.


