Systematic uncertainties in DUNE

Chris Marshall
Lawrence Berkeley National Laboratory
Precision Time Structure Workshop
2 November, 2019
Outline

- A generic long-baseline oscillation measurement, and how systematic uncertainties arise
- The DUNE near detector
- Flux uncertainty in DUNE
- Neutrino interaction & energy reconstruction uncertainties
Neutrino oscillation probability

- The goal of any neutrino oscillation experiment:
 - Measure the flux of neutrinos of flavor β at a distance L
 - Compare it to the flux of neutrinos of flavor α at the source
 - As a function of neutrino energy
 - Disappearance ($\alpha = \beta$) and appearance ($\alpha \neq \beta$)

\[P(\nu_\alpha \rightarrow \nu_\beta) = \frac{\Phi_{\nu_\beta}(E_\nu, L)}{\Phi_{\nu_\alpha}(E_\nu, 0)} \]
We measure neutrino interactions, not fluxes directly

![Diagram showing neutrino source and far detector connected by distance L, with neutrinos ν_α and ν_β]

\[N(E_\nu) = \Phi(E_\nu) \times \sigma(E_\nu) \times \epsilon(E_\nu) \]

- Observed interaction rate, \(N \), depends on fluxes, but also cross sections (\(\sigma \)), and detector acceptance (\(\epsilon \))
- Cross sections, in particular, are highly uncertain
Energy reconstruction is challenging

- And the observed rate is measured as a function of reconstructed energy, which is connected to neutrino energy E_ν by some smearing matrix D

- This matrix dependent on your particular detector, but also depends strongly on neutrino interactions

$$N(E_{reco}) = \int \Phi(E_\nu) \times \sigma(E_\nu) \times \epsilon(E_\nu) \times D(E_\nu \rightarrow E_{reco}) dE_\nu$$
Uncertainties are reduced with near detector measurements

\[
N_{far}(E_{reco}) = \int \Phi(E_\nu, L) \times \sigma(E_\nu) \times \epsilon(E_\nu) \times D(E_\nu \rightarrow E_{reco}) dE_\nu
\]

\[
N_{near}(E_{reco}) = \int \Phi(E_\nu, 0) \times \sigma(E_\nu) \times \epsilon(E_\nu) \times D(E_\nu \rightarrow E_{reco}) dE_\nu
\]

- Near detector in the same flux, with the same nuclear target, and a similar detector technology, will constrain many uncertain parameters
But there is no magical “cancellation”

\[
N_{\nu_\beta}^{\text{far}}(E_{\text{reco}}) = \int \Phi_{\nu_\beta}(E_\nu, L) \times \sigma_{\nu_\beta}(E_\nu) \times \epsilon_{\nu_\beta}^{\text{far}}(E_\nu) \times D_{\nu_\beta}^{\text{far}}(E_\nu \rightarrow E_{\text{reco}}) dE_\nu
\]

\[
N_{\nu_\alpha}^{\text{near}}(E_{\text{reco}}) = \int \Phi_{\nu_\alpha}(E_\nu, 0) \times \sigma_{\nu_\alpha}(E_\nu) \times \epsilon_{\nu_\alpha}^{\text{near}}(E_\nu) \times D_{\nu_\alpha}^{\text{near}}(E_\nu \rightarrow E_{\text{reco}}) dE_\nu
\]

- There are many differences between the observed interaction rates at the near and far detectors, which lead to systematic uncertainties:
 - Fluxes are different primarily due to oscillations
 - Cross sections are strongly energy-dependent, potentially different nucleus, or different neutrino flavor
 - Even if ND and FD are “functionally identical,” acceptance and energy reconstruction will be somewhat different due to the sizes
But there is no magical “cancellation”

\[
N_{\nu\beta}^{\text{far}}(E_{\text{reco}}) = \int \Phi_{\nu\beta}(E_{\nu}, L) \times \sigma_{\nu\beta}(E_{\nu}) \times \epsilon_{\nu\beta}^{\text{far}}(E_{\nu}) \times D_{\nu\beta}^{\text{far}}(E_{\nu} \rightarrow E_{\text{reco}}) dE_{\nu}
\]

\[
N_{\nu\alpha}^{\text{near}}(E_{\text{reco}}) = \int \Phi_{\nu\alpha}(E_{\nu}, 0) \times \sigma_{\nu\alpha}(E_{\nu}) \times \epsilon_{\nu\alpha}^{\text{near}}(E_{\nu}) \times D_{\nu\alpha}^{\text{near}}(E_{\nu} \rightarrow E_{\text{reco}}) dE_{\nu}
\]

- All of these terms depend on E_{ν}, so this product cannot be factorized
- Even if the ND and FD were literally identical, the flux differences mean that nothing actually cancels
- Independent knowledge of flux and cross sections is very helpful
But there is no magical “cancellation”

\[
N_{\nu_\beta}^{\text{far}}(E_{\text{reco}}) = \int \Phi_{\nu_\beta}(E_\nu, L) \times \sigma_{\nu_\beta}(E_\nu) \times \epsilon_{\nu_\beta}^{\text{far}}(E_\nu) \times D_{\nu_\beta}^{\text{far}}(E_\nu \to E_{\text{reco}}) dE_\nu
\]

\[
N_{\nu_\alpha}^{\text{near}}(E_{\text{reco}}) = \int \Phi_{\nu_\alpha}(E_\nu, 0) \times \sigma_{\nu_\alpha}(E_\nu) \times \epsilon_{\nu_\alpha}^{\text{near}}(E_\nu) \times D_{\nu_\alpha}^{\text{near}}(E_\nu \to E_{\text{reco}}) dE_\nu
\]

- All of these terms depend on E_ν, so this product cannot be factorized
- Even if the ND and FD were literally identical, the flux differences mean that nothing actually cancels
- Independent knowledge of flux and cross sections is very helpful
- 40 kt fiducial LAr TPC far detector at SURF, 1300 km baseline
- Upgraded conventional neutrino beam at Fermilab, peaked at 2.5 GeV
- Near detector system at Fermilab is critical for constraining systematic uncertainties
The DUNE Near Detector

- LAr TPC functionally similar to far detector
- Magnetized, high-pressure gaseous Ar TPC with high-performance calorimeter
- Magnetized plastic scintillator tracker & on-axis beam monitor
Movable detectors for on- and off-axis measurements

- LAr + HPgTPC system will move up to 33m off axis to sample different energy spectra in the same beam
- Next talk will provide details about what this does for uncertainties
DUNE ND philosophy

- **LAr TPC**
 - High rate (30M ν_μ CC, 5k ν+e elastic events/yr) enables many simultaneous exclusive measurements, and a direct flux constraint
 - Similar technology to FD enables use of PRISM technique to directly probe energy response in different fluxes

- **High-pressure gaseous Ar TPC**
 - Excellent PID, 4π coverage, sign selection, very low thresholds \rightarrow study ν-Ar interactions in exquisite detail, much better than FD

- Robust monitoring of beam spectrum vs. time
Flux uncertainties in DUNE

- Absolute flux uncertainty is ~8% and dominated by hadron production uncertainties

- This includes currently available constraints from hadron production experiments (i.e. NA49), but not future constraints (i.e. EMPHATIC, NA61), or in situ measurements (i.e. ν+e elastic, low-ν)
Near/Far flux ratio

- Near/Far ratio has ~20-50% deviations from unity, before accounting for oscillations.
- Leads to an uncertainty that is ~0.5% in the peak, but rising to ~2% in the falling edge, and dominated by focusing effects.
- This cannot be constrained by the near detector.
Neutrino-electron elastic scattering

\[
\frac{d\sigma}{dy} (\nu e^- \rightarrow \nu e^-) = \frac{G_F^2 m_e E_{\nu}}{2\pi} \left[\left(\frac{1}{2} - \sin^2 \theta_W \right)^2 + \sin^4 \theta_W (1 - y)^2 \right]
\]

\[E_e \theta_e^2 < 2m_e\]

• Pure electroweak process with known cross section at tree level
• Signal is a single, forward electron with no other particles
• MINERvA has demonstrated using ν+e to constrain the NuMI flux

$\nu + e$ flux constraint: \(~5\% for MINERvA, \sim 2\% for DUNE\)
Cross section uncertainties

- DUNE has evaluated ~60 cross section uncertainties, affecting quasi-elastic scattering, resonance production, deeply inelastic scattering, nuclear effects, ν_μ/ν_e differences
- Starts with, but greatly expands on GENIE reweighting framework
- Used in oscillation fits in forthcoming physics TDR
<table>
<thead>
<tr>
<th>Cross section uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaCCQE</td>
</tr>
<tr>
<td>VecFFCCQEshape</td>
</tr>
<tr>
<td>CCQEPauliSupViaKF</td>
</tr>
<tr>
<td>MaNCEL</td>
</tr>
<tr>
<td>MaCCRES</td>
</tr>
<tr>
<td>MvCCRES</td>
</tr>
<tr>
<td>MaNCRES</td>
</tr>
<tr>
<td>MvNCRES</td>
</tr>
<tr>
<td>Theta_Delta2Npi</td>
</tr>
<tr>
<td>AhtBY</td>
</tr>
<tr>
<td>BhtBY</td>
</tr>
<tr>
<td>CV1uBY</td>
</tr>
<tr>
<td>CV2uBY</td>
</tr>
<tr>
<td>BeRPA_A</td>
</tr>
<tr>
<td>BeRPA_B</td>
</tr>
<tr>
<td>BeRPA_D</td>
</tr>
<tr>
<td>BeRPA_D</td>
</tr>
<tr>
<td>C12ToAr40_2p2hScaling_nu</td>
</tr>
<tr>
<td>C12ToAr40_2p2hScaling_nubar</td>
</tr>
<tr>
<td>nuenuubar_xsec_ratio</td>
</tr>
<tr>
<td>nuenunumu_xsec_ratio</td>
</tr>
<tr>
<td>SPPLowQ2Suppression</td>
</tr>
<tr>
<td>SPPLowQ2Suppression</td>
</tr>
<tr>
<td>NR_nu_n_CC_2Pi</td>
</tr>
<tr>
<td>NR_nu_p_CC_2Pi</td>
</tr>
<tr>
<td>NR_nu_n_NC_1Pi</td>
</tr>
<tr>
<td>NR_nu_n_NC_3Pi</td>
</tr>
<tr>
<td>NR_nu_p NC_2Pi</td>
</tr>
<tr>
<td>NR_nubar n CC 1Pi</td>
</tr>
<tr>
<td>NR_nubar n CC 3Pi</td>
</tr>
<tr>
<td>NR_nubar n CC 2Pi</td>
</tr>
<tr>
<td>NR_nubar n CC 3Pi</td>
</tr>
<tr>
<td>NR_nubar n NC 1Pi</td>
</tr>
<tr>
<td>NR_nubar n NC 3Pi</td>
</tr>
<tr>
<td>NR_nubar p NC 2Pi</td>
</tr>
<tr>
<td>NR_nubar p NC 1Pi</td>
</tr>
<tr>
<td>NR_nubar p NC 3Pi</td>
</tr>
</tbody>
</table>
Cross section uncertainties

<table>
<thead>
<tr>
<th>MaCCQE</th>
<th>NR_nu_n_CC_2Pi</th>
</tr>
</thead>
<tbody>
<tr>
<td>VecFFCCQẼshape</td>
<td>NR_nu_n_CC_3Pi</td>
</tr>
<tr>
<td>CCQEPauliSupViaKF</td>
<td>NR_nu_p_CC_2Pi</td>
</tr>
<tr>
<td>MaNCEL</td>
<td>NR_nu_p_CC_3Pi</td>
</tr>
<tr>
<td>MaCCRES</td>
<td>NR_nu_p_CC_3Pi</td>
</tr>
<tr>
<td>MvCCRES</td>
<td>NR_nu_np_CC_1Pi</td>
</tr>
<tr>
<td>MaNCRES</td>
<td>NR_nu_n_NC_2Pi</td>
</tr>
<tr>
<td>MvNCRES</td>
<td>NR_nu_n_NC_3Pi</td>
</tr>
<tr>
<td>Theta_Delta2Npi</td>
<td>NR_nu_n_CC_2Pi</td>
</tr>
<tr>
<td>AhtBY</td>
<td>NR_nu_n_CC_3Pi</td>
</tr>
<tr>
<td>BhtBY</td>
<td>NR_nu_p_CC_2Pi</td>
</tr>
<tr>
<td>CV1uBY</td>
<td>NR_nu_p_CC_3Pi</td>
</tr>
<tr>
<td>CV2uBY</td>
<td>NR_nu_p_CC_1Pi</td>
</tr>
<tr>
<td>FrCEx_pi</td>
<td>NR_nubar_n_CC_1Pi</td>
</tr>
<tr>
<td>FrElas_pi</td>
<td>NR_nubar_n_CC_2Pi</td>
</tr>
<tr>
<td>FrInel_pi</td>
<td>NR_nubar_n_CC_3Pi</td>
</tr>
<tr>
<td>FrAbs_pi</td>
<td>NR_nubar_p_CC_1Pi</td>
</tr>
<tr>
<td>FrPiProd_pi</td>
<td>NR_nubar_p_CC_2Pi</td>
</tr>
<tr>
<td>FrCEx_N</td>
<td>NR_nubar_p_CC_3Pi</td>
</tr>
<tr>
<td>FrElas_N</td>
<td>NR_nubar_n_NC_1Pi</td>
</tr>
<tr>
<td>FrInel_N</td>
<td>NR_nubar_n_NC_2Pi</td>
</tr>
<tr>
<td>FrAbs_N</td>
<td>NR_nubar_n_NC_3Pi</td>
</tr>
<tr>
<td>FrPiProd_N</td>
<td>NR_nubar_p_NC_1Pi</td>
</tr>
</tbody>
</table>

I'm going to spare you the details, and instead explain more qualitatively how cross section uncertainties impact DUNE.
Cross section uncertainties

- DUNE is sensitive to effects that impact the rate of ν_μ and ν_e CC interactions at the Far Detector as a function of reconstructed neutrino energy.

\[
\sin^2 2\theta_{23} = 0.580 \\
\Delta m^2_{32} = 2.451 \times 10^{-3} \text{ eV}^2
\]

3.5 years (staged)

- Signal ν_μ CC
- ν_μ CC
- NC
- $(\nu_e + \nu_\mu)$ CC
- $(\nu_e + \nu_\mu)$ CC

\[
\sin^2 2\theta_{13} = 0.088 \\
\sin^2 2\theta_{23} = 0.580
\]

3.5 years (staged)

- Signal $(\nu_e + \nu_\mu)$ CC
- Beam $(\nu_e + \nu_\mu)$ CC
- NC
- ν_μ CC
- ν_e CC

\[
\delta_{CP} = -\pi/2 \\
\delta_{CP} = 0 \\
\delta_{CP} = +\pi/2
\]
Cross section uncertainties

- ν_μ and ν_e total CC cross sections
- But also exclusive cross sections, which change the makeup of the final state, and thus impact how much of the neutrino energy is visible to DUNE
Neutrino energy reconstruction

- Muon energy is reconstructed by range for fully-contained events
- Hadronic energy is reconstructed calorimetrically
- \(E_\nu = E_\mu + E_{\pi^\pm} + E_{\pi^0} + E_p + E_n + ... \)
Leptons, pions, and protons are all seen by DUNE, and can be reconstructed, albeit with somewhat different response functions

$$E_ν = E_μ + E_{π^±} + E_{π^0} + E_p + E_n + \ldots$$
• Neutrons show up as small blips in the detector, and their energy is mostly lost, i.e. “missing energy”

\[E_\nu = E_\mu + E_{\pi^\pm} + E_{\pi^0} + E_p + E_n + \ldots \]
• If you change the composition of the final state, i.e. if there are more neutrons and fewer protons, then the reconstructed energy will be impacted

\[E_v = E_\mu + E_{\pi^\pm} + E_{\pi^0} + E_p + E_n + \ldots \]
Neutrino energy reconstruction impacts oscillation parameters

- ν_μ disappearance parameters are especially sensitive to energy misreconstruction
 - Absolute scale shift directly pulls Δm^2
 - Resolution uncertainties fill in the “dip” and drive $\sin^2 2\theta_{23}$
- Uncertainties in reconstructed energy can be due to detector effects (i.e. calibration uncertainties) or cross sections (i.e. neutron production uncertainties)
Example: 20% of final-state proton energy becomes neutrons

- Suppose the kinetic energy of final-state protons is decreased 20% (i.e. by giving energy to neutrons)
- Results in a ~3% shift in best-fit Δm^2
- In the next talk, Mike will describe how our ND design mitigates this type of uncertainty
- Similar effects could be obtained with shifts to detector absolute energy scale, for example
Important cross section & reconstruction systematics for δ_{CP}

- Appearance spectra are less sensitive to absolute energy reconstruction.
- But several other effects have significant impact on appearance:
 - Absolute EM energy scale in FD.
 - Cross section uncertainties that only impact ν_e, i.e. effects in phase space forbidden in ν_μ CC.
 - Cross section uncertainties that affect $\nu_e/\bar{\nu}_e$ ratio.
 - Beam ν_e is \sim5% of total sample in the peak (thanks, large θ_{13}!)
 - NC backgrounds are <5%, but large uncertainties on NC π^0.

\[\sin^2 2\theta_{13} \]
Event mixture in DUNE oscillation sample is very different from T2K

- GENIE “DefaultPlusValenciaMEC” on Ar
- DUNE oscillation peak region is roughly 40% 0π, 40% 1π, 20% $2+\pi$
 - Compared to T2K $\sim85\% \ 0\pi$
- Huge amount of theory work has dramatically improved our modeling of CC0π – we need this same commitment to 1π, 2π, SIS/DIS, etc. for DUNE

\begin{align*}
0.4 < E_\nu < 0.8 \text{ GeV} & \quad 2.3 < E_\nu < 2.7 \text{ GeV} & \quad 4.0 < E_\nu < 4.5 \text{ GeV}
\end{align*}
Detector acceptance (LAr ND)

- LAr ND has reduced acceptance due to non-containment of muons and/or hadronic showers, but is designed such that there are no holes in the accepted phase space.
- Differences in ND and FD acceptance will need to be corrected, but this is largely due to geometric effects.
- HPgTPC in ND will also have 4π acceptance.
Far detector selection efficiency

- ν_e CC in neutrino mode
- Full MC with CVN event selection (solid curve) is comparable to fast MC from CDR (dashed curve)
- 85-90% efficient in the region where most events are expected
- Must ensure that this efficiency is robust against interaction & detector models
Summary

• DUNE is sensitive to systematic uncertainties due to the flux prediction, neutrino interaction model, energy reconstruction, and detector acceptance & efficiency

• Highly-capable multi-system near detector is designed to reduce these uncertainties, as well as to resolve broad categories of potential effects (unknown unknowns)
Backups
Flux uncertainty principal component analysis

- The largest HP & focusing uncertainties show up as principal components of the full flux covariance.
- The largest 30 components are treated as nuisance parameters in DUNE TDR sensitivity analysis.
Energy resolution is quite good in a region of (E, θ), basically where $E\theta^2$ is very small.

Effectively, select a subsample of good, and unbiased energy resolution and measure shape from it.

Requires very high statistics.
ν+e scattering signal and backgrounds in E,θ

- **Signal** is subject to kinematic constraint $E_e \theta_e^2 < 2m_e$
- **Dominant background** is ν_e CC at very low Q^2
- **But background shape** in E, θ is very different from signal, and realistic uncertainties on background shape still do not produce signal-like distribution
2D templates for $\nu + e$ signal

Each template is a bin of neutrino energy, and adds events in (E, θ).
DUNE ND ν+e statistics

- DUNE LAr ND at ~50t F.V. will have ~15k events in 3 years, even with very conservative thresholds
- >100x more statistics than MINERvA LE analysis
<table>
<thead>
<tr>
<th>Cross section uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td>MaCCQE</td>
</tr>
<tr>
<td>VecFFCCQEShape</td>
</tr>
<tr>
<td>CCQEPauliSupViaKF</td>
</tr>
<tr>
<td>MaNCEL</td>
</tr>
<tr>
<td>MaCCRES</td>
</tr>
<tr>
<td>MvCCRES</td>
</tr>
<tr>
<td>MaNCRES</td>
</tr>
<tr>
<td>MvNCRES</td>
</tr>
<tr>
<td>Theta_Delta2Npi</td>
</tr>
<tr>
<td>AhtBY</td>
</tr>
<tr>
<td>BhtBY</td>
</tr>
<tr>
<td>CV1uBY</td>
</tr>
<tr>
<td>CV2uBY</td>
</tr>
<tr>
<td>BeRPA_A</td>
</tr>
<tr>
<td>BeRPA_B</td>
</tr>
<tr>
<td>BeRPA_D</td>
</tr>
<tr>
<td>C12ToAr40_2p2hScaling_nu</td>
</tr>
<tr>
<td>C12ToAr40_2p2hScaling_nubar</td>
</tr>
<tr>
<td>nuenuebar_xsec_ratio</td>
</tr>
<tr>
<td>nuenumu_xsec_ratio</td>
</tr>
<tr>
<td>SPPLowQ2Suppression</td>
</tr>
<tr>
<td>Mnv2p2hGaussEnhancement</td>
</tr>
<tr>
<td>MKSPP_ReWeight</td>
</tr>
<tr>
<td>E2p2h_A_nu</td>
</tr>
<tr>
<td>E2p2h_B_nu</td>
</tr>
<tr>
<td>E2p2h_A_nubar</td>
</tr>
<tr>
<td>E2p2h_B_nubar</td>
</tr>
<tr>
<td>MvCCRES</td>
</tr>
<tr>
<td>MaNCRES</td>
</tr>
<tr>
<td>MvNCRES</td>
</tr>
<tr>
<td>Theta_Delta2Npi</td>
</tr>
<tr>
<td>AhtBY</td>
</tr>
<tr>
<td>BhtBY</td>
</tr>
<tr>
<td>CV1uBY</td>
</tr>
<tr>
<td>CV2uBY</td>
</tr>
<tr>
<td>BeRPA_A</td>
</tr>
<tr>
<td>BeRPA_B</td>
</tr>
<tr>
<td>BeRPA_D</td>
</tr>
<tr>
<td>C12ToAr40_2p2hScaling_nu</td>
</tr>
<tr>
<td>C12ToAr40_2p2hScaling_nubar</td>
</tr>
<tr>
<td>nuenuebar_xsec_ratio</td>
</tr>
<tr>
<td>nuenumu_xsec_ratio</td>
</tr>
<tr>
<td>SPPLowQ2Suppression</td>
</tr>
<tr>
<td>Mnv2p2hGaussEnhancement</td>
</tr>
<tr>
<td>MKSPP_ReWeight</td>
</tr>
<tr>
<td>E2p2h_A_nu</td>
</tr>
<tr>
<td>E2p2h_B_nu</td>
</tr>
<tr>
<td>E2p2h_A_nubar</td>
</tr>
<tr>
<td>E2p2h_B_nubar</td>
</tr>
</tbody>
</table>
GENIE ReWeight

GENIE reweight parameters affecting
CC quasi-elastic
CC resonance production
CC deep inelastic scattering
Final-state interactions
Neutral currents
DUNEint not covered in GENIE

Additional parameters:

CC QE
CC Resonance
2p2h
Scaling C → Ar
ν_e/ν_μ or ν_e/ν_e

Mnv2p2hGaussEnhancement
MKSPP_ReWeight
E2p2h_A_nu
E2p2h_B_nu
E2p2h_A_nubar
E2p2h_B_nubar
BeRPA_A
BeRPA_B
BeRPA_D
C12ToAr40_2p2hScaling_nu
C12ToAr40_2p2hScaling_nubar
nuenuebar_xsec_ratio
nuenumu_xsec_ratio
SPPLowQ2Suppression
DUNEint not covered in GENIE

Additional parameters affecting non-resonant pion production

NR_nu_n_CC_2Pi
NR_nu_n_CC_3Pi
NR_nu_p_CC_2Pi
NR_nu_p_CC_3Pi
NR_nu_np_CC_1Pi
NR_nu_n_NC_1Pi
NR_nu_n_NC_2Pi
NR_nu_n_NC_3Pi
NR_nu_p_NC_1Pi
NR_nu_p_NC_2Pi
NR_nu_p_NC_3Pi
NR_nubar_n_CC_1Pi
NR_nubar_n_CC_2Pi
NR_nubar_n_CC_3Pi
NR_nubar_p_CC_1Pi
NR_nubar_p_CC_2Pi
NR_nubar_p_CC_3Pi
NR_nubar_n_NC_1Pi
NR_nubar_n_NC_2Pi
NR_nubar_n_NC_3Pi
NR_nubar_p_NC_1Pi
NR_nubar_p_NC_2Pi
NR_nubar_p_NC_3Pi
Example 1: uncertainty on “2-particle 2-hole” interactions

- MINERvA and NOvA see an enhancement in cross section that is consistent with multinucleon 2p2h scattering, i.e. $\nu_\mu(np) \rightarrow \mu^{-}nn$

- MINERvA can fit in 4 different ways: as 1p1h, nn only, pp only, 2p2h

- Implemented parameter moves events between nn \rightarrow 2p2h \rightarrow 1p1h
Example 2: Interference in single pion production

- CC1π is important contribution to DUNE oscillation signal
- GENIE's Rein-Sehgal resonant pion model lacks interference with non-resonant processes
- Our model includes this effect using the “MK model,” which includes resonant, non-resonant, and interference terms
- Result in different W distribution and different hadron ejection
- Difference is treated as uncertainty
Example 3: Suppression in CC1π at low momentum transfer

- MiniBooNE, MINERvA, NOvA, MINOS see a suppression at low Q^2 for single pion production
- Evaluated from a fit to MINERvA data compared to our version of GENIE
- DUNE cross section uncertainty includes physics beyond GENIE
Lesson from NOvA: significant MC tuning will be required to match ND

- Out-of-the-box GENIE RFG (top-left), with empirical 2p2h added (bottom left)
- Improved models and extensive cross section model tuning (right)
Event mixture in DUNE oscillation sample is different from T2K, NOvA

- DUNE oscillation maximum occurs where QE, resonant, and DIS interactions are all significant
Post-fit systematics in TDR

- Left panel is flux & FD detector effects, right panel is cross sections
- Generally very weakly constrained by FD alone, but become very constrained by ND
Far detector event selection: FHC ν_e CVN probability

- FHC event probabilities from CVN
- Cut at 0.85 for this analysis
- Selects oscillated and intrinsic electrons