

Midwest Medical Device Sterilization Workshop

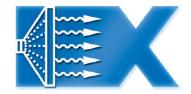
The Choice of Sterilization Modality

Technical & Normative Aspects

Josef Mittendorfer High Tech Consulting Consultant to Mediscan

IONIZING RADIATION FOR MEDICAL DEVICE STERILIZATION Three Technologies – Two Goals:

Eliminate Biological Pathogens Keep Medical Device Functional

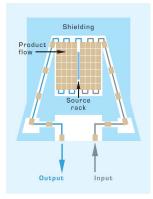

IONIZING RADIATION FOR MEDICAL DEVICE STERILIZATION

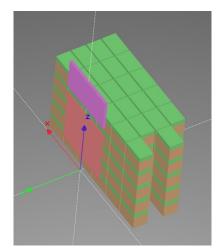
FAST & EFFICIENT $\approx 10\%$

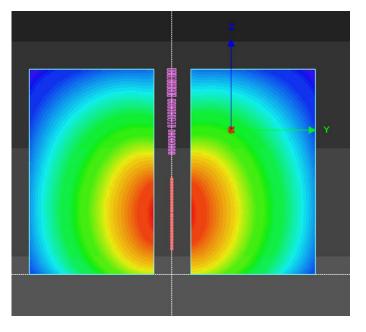
RELIABLE & PROVEN $\approx 90\%$

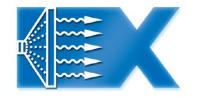
SMART & INNOVATIVE

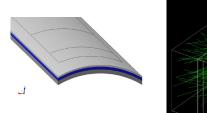
FAST & EFFICIENT

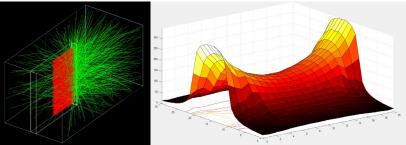

Scalable Power: 20 - 200 kW High Throughput: 1 Truckload =2h Limited Penetration






RELIABLE & PROVEN


Pallet/Tote Treatment Co-Supply/Reload "No Turn Off"



SMART & INNOVATIVE

"Turn Off" Pallet/Tote/Box Treatment "Costly" Photon Generation – Lost Heat Recovery

ISO 11137-Standard Family

Process Definition:

- Sterilization Modality
 - D_{ster} Sterilization Dose
- D_{max,acc} Maximum acceptible dose

Due 2020 ?

Requirements on Radiation Source – Sterilizing Agent

Electron beam /X-ray: Electron Energy shall be specified

E-Beam E > 10 MeV

X-ray E > 5 MeV

Assessment of Potential of Induced Radioactivity necessary

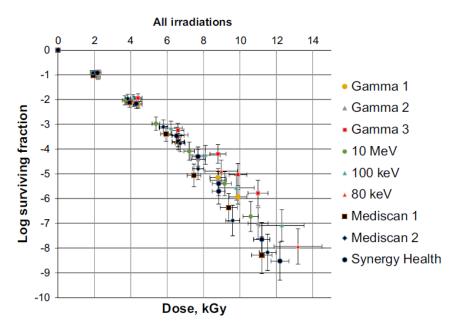
Literature: e.g. Gregoire et. al. Activation Experiments

PERGAMON Radiation Physics and Chemistry 67 (2003) 149–167

www.elsevier.com/locate/radphyschem

Radiological safety of medical devices sterilized with X-rays at 7.5 MeV

O. Grégoire^{a,*}, M.R. Cleland^a, J. Mittendorfer^b, M. Vander Donckt^a, J. Meissner^c


^a Ion Beam Applications (IBA s.a.), Chemin du Cyclotron 3, 1348 Lourain-la-Neure, Belgiam ^b High Tech Consulting, Anton Bruckerstrasse 6, 4600 Wels, Austria ^c Meissner Consulting GmbH, Angererstrasse 36, 80796 Munich, Germany

Received 28 December 2001; accepted 18 September 2002

Log Survival Fraction B. Pumilus

Radiation Physics and Chemistry 107 (2015) 128-130

Transfer of an Established Sterilization Dose...

... to a radiation modality different from the that on which the dose was originally established shall not be permitted unless data are available to demonstrate the differences in operation conditions have no impact on the microbial effectiveness

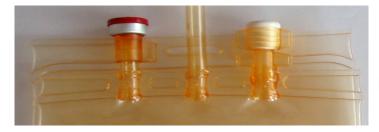
Guidance:

A successful dose verification experiment is considered necessary

Transfer of an Established D_{max,acc}...

... to a radiation modality different from the that on which the dose was originally established requires a recorded assessment that the differences in irradiation conditions do not affect the validity of the established dose

Guidance:


...higher dose rate may lower the unwanted effects upon product...

Need for more studies.

Today re-establishing on the new modality is required.

Material Qualification Experiment: 125 kGy

E-Beam

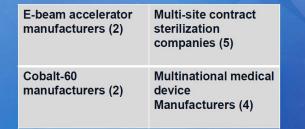
Guide on the establishment of the maximum acceptable dose (D_{max,acc}) for a product

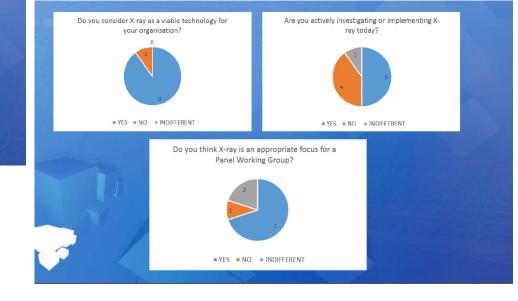
Technical Information AAMI TIR17:1997 Report Radiation sterilization-Material qualification AAMI Association for the Advancement of Medical Instrumentation

List of Title

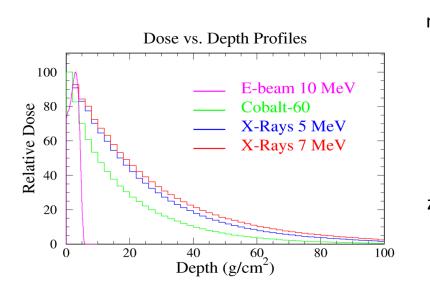
Gamma

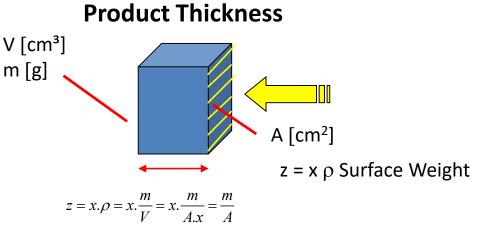
Change of Modality: Gamma \rightarrow X-ray (7 MeV)


- ❑ Same or better penetration No need to change process load
- Experience/Acquaintance with technology
- Availability of X-ray source
- **Easier for new products**
- Low dose products
- Flexibility in dose setting/product Presentation
- Higher dose rate can mitigate adverse material effects
- **Cost considerations/effective photon utilization**


2019 X-ray WG survey results

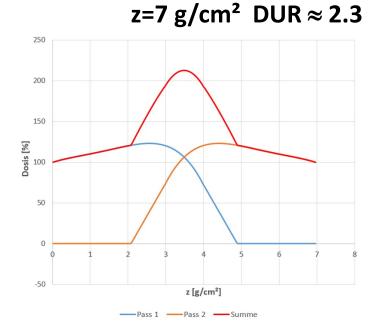
QUESTIONNAIRE SENT TO PANEL MEMBERSHIP REPRESENTING ALL THOSE IN THE FOLLOWING CATEGORIES :

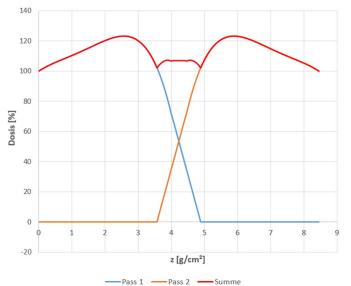

RESPONSES OBTAINED FROM 10 of 13 ORGANISATIONS



Change of Modality: Gamma \rightarrow E-Beam (10 MeV)

Penetration




 $z < 9 g/cm^2$ 2-sided E-beam Irradiation possible

Product Dimensions/Beam Energy Matters:

 $z=8.5 g/cm^2$ DUR ≈ 1.2

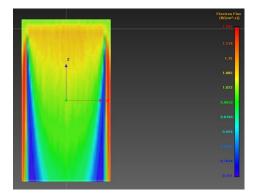
Product/Packaging Considerations

Dose Uniformity:

DUR < 1.5 X-ray (E-Beam needs very special treatment scheme)

- \Box Low Density (z<9 g/cm²) \rightarrow E-Beam High Density \rightarrow X-ray
- □ Regular Load \rightarrow E-Beam Bulk Load (Metal, Fluids) \rightarrow X-ray
- □ Temperature Rise: $\Delta T [K] = D [kGy]/c [J/g.K] \rightarrow X$ -ray ok!

E-Beam can do several passes


Charge trapping in bulky polymer slabs \rightarrow X-ray

Product Considerations

Intrinsic Dose Characteristics (Dose Gradients) in E-Beam to be assessed

(e.g. by Mathematical Modelling)

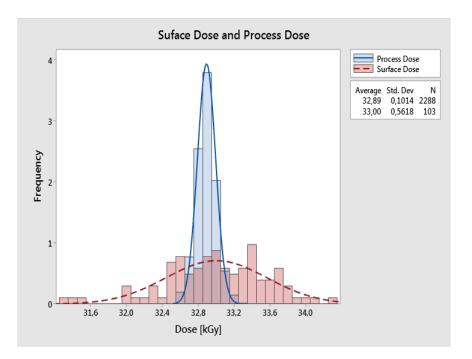
Shielding of Biologics and Electronic Components \rightarrow E-Beam

Product Considerations

Electron Beam requires fine grain PQ Dose Mapping

- □ Thoughtful dosimeter placement
- □ More dosimeter locations than Gamma/X-ray
- □ Probabably higher variability than Gamma/X-ray
- Backup by Mathematical Model beneficial

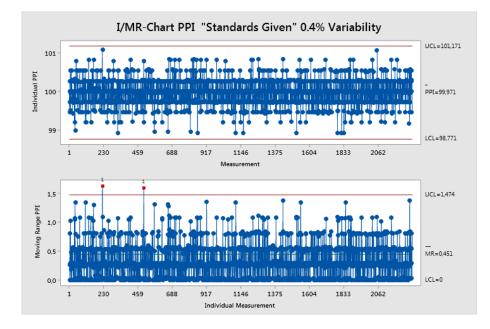
Thoughtful Definition of Processing Categories


Beam Based Process Considerations

 \overline{Vs}

Flexible Dose Setting:
$$D = k$$

Very accurate & precise dosing:


Variability: Dosimeter $\approx 1.5\%$ Process Parameter $\approx 0.4\%$

Beam Based Process Considerations

Process Control via Process Parameter for each process load possible !

Facility Considerations:

- □ Accelerator Energy & Power
- □ Irradiation Topology (top-down, side)
- □ Irradiation Container/ Process Load
- **Conveyor System**

Delivery: System + Shielding/Building Specification Maintenance/Training

Conclusion

- **Widening of Modality Spectrum is Essential**
- **Beam Based Technologies are Capable and Mature**
- **Consider Sterilization Modality already in Product Development**
- **U** Validate Alternative Modalities
- **Beam Based: Consider E-Beam first, X-ray as Alternative**