

Passion for patients Driving collaborative innovation Kilmer Community 2019

Gamma to e-beam/x-ray: fundamentals to practice

Byron J. Lambert, PhD Byron.lambert@abbott.com

Fermilab

Fermi National Accelerator Laboratory

Midwest Medical Device Sterilization Workshop

Passion for patients Driving collaborative innovation Kilmer Community 2019

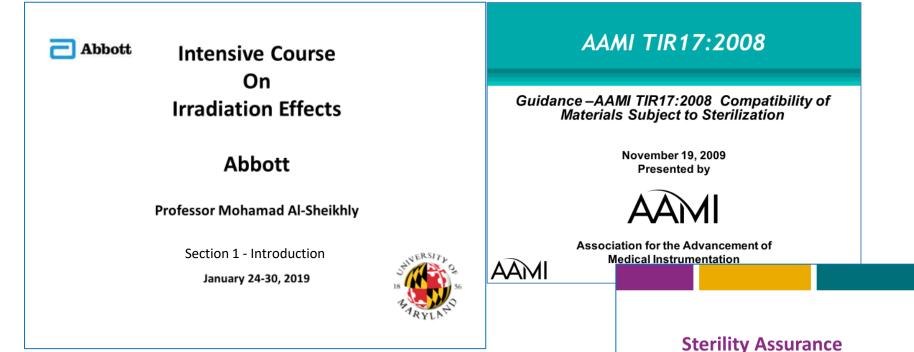
E-BEAM / X-RAY STERILIZATION

85+% EO of the sterilization market Gamma

ALTERNATIVE GAS STERILIZATION (AGS)

Passion for patients Driving collaborative innovation Kilmer Community 2019

OBJECTIVE – facilitate success: Gamma → E-beam / X-ray


• Leverage fundamental scientific realities of ionizing radiation

Ops

• Optimally apply practical industry guidance

AGENDA

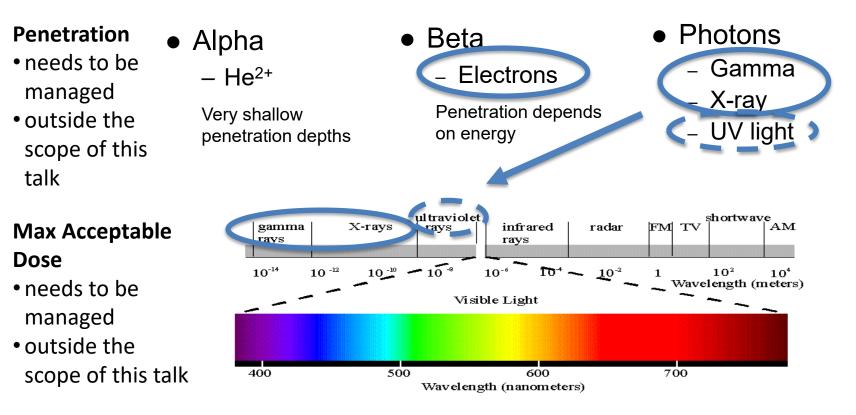
- Fundamentals → 'follow the electrons'
- Exercise: interpret guidance in ISO 11137-1 radiation sterilization standard
- Practical guidance AAMI TIR17: material compatibility potential & pitfalls
- Summary

J. Silverman, Radiation processing: The industrial applications of radiation chemistry, J. Chem Ed 58 (1981) 168–173, https://doi.org/10.1021/ed058p168 Accessed 17Sep'19

> Byron Lambert Senior Associate Fellow, Sterilization Abbott Vascular

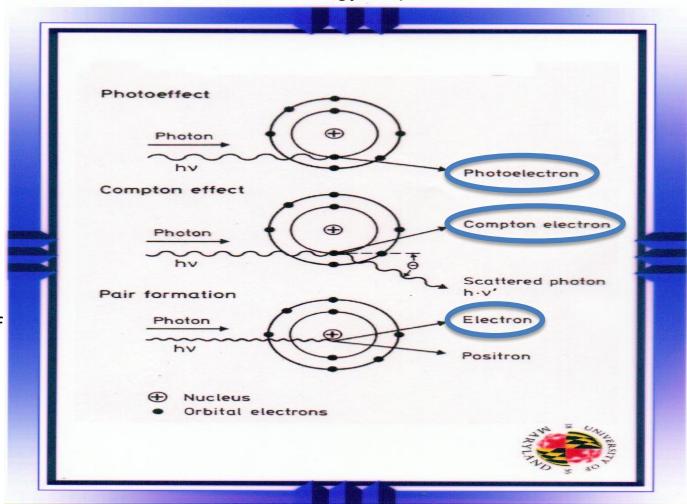
Module 4:

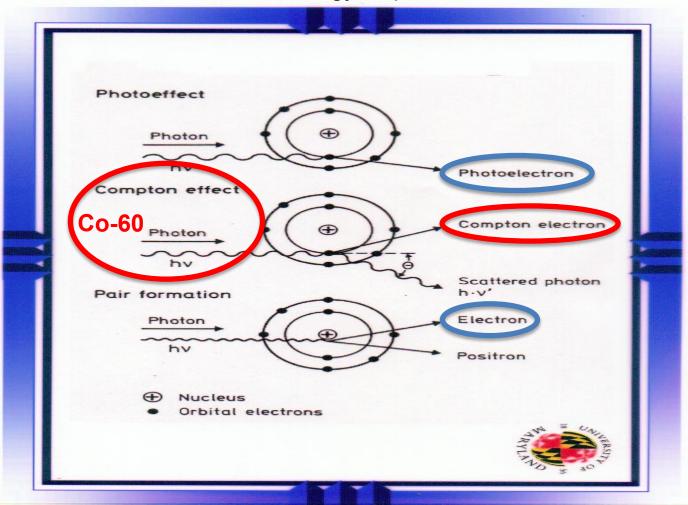
Packaging and material compatibility


Maintenance of validation

Vu Le Manager, Engineering Sterilization Abbott Vascular

May'19; Potentially available in the future


Types of Ionizing Radiation


Interaction of Ionizing Radiation with Matter						
10 ⁻¹⁸ 10 ⁻¹⁵	10 ⁻¹²	 10 ⁻⁹	 10 ⁻⁶	10 ⁻³	1	sec
Energy deposition]	Chemi	cal Proces	ses		
excited molecules localized along tracks Ions and excited molecules	• Radicals and solvated electrons diffuse from track zones, react with other molecules.					
react/dissociate forming free radicals. Electrons solvated n polar media	• Chemical changes to substrate					
Direct Effect $M \longrightarrow M^+, e$	Gar	SAME M	beam and	d X-ray dep SM, IONIZ/		
Indirect Effect						

Secondary reactions of solute with primary species formed by solvent

Gamma Radiation - Possible "Energy Deposition" Interactions of Photons

Radiation dose kGy kJ/kg Energy deposition into mass of materials Gamma Radiation - Possible "Energy Deposition" Interactions of Photons

Compton Scattering - Gamma Sterilization with Co-60

In Compton scattering, an incoming photon makes contact with an orbital electron and transfers some of its energy to it. The result is a free "recoil" electron travelling at an angle v and the photon deflected at angle θ .

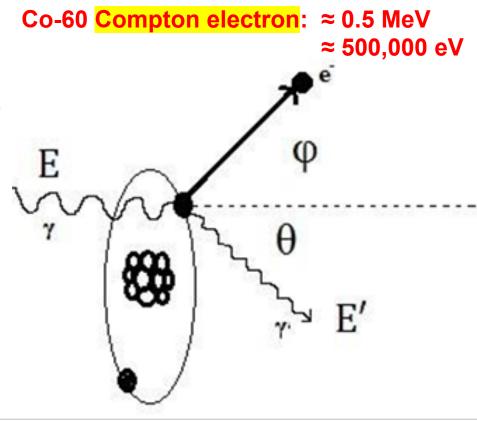
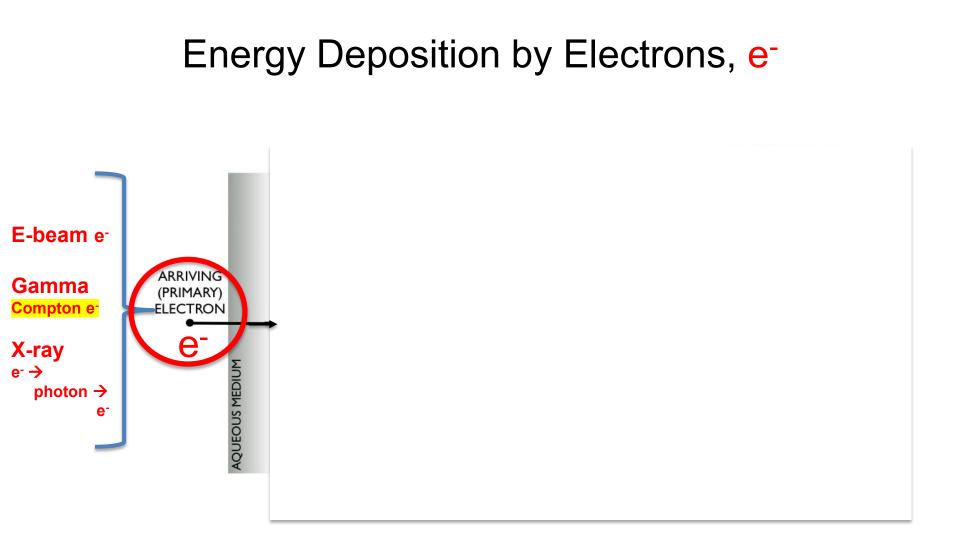
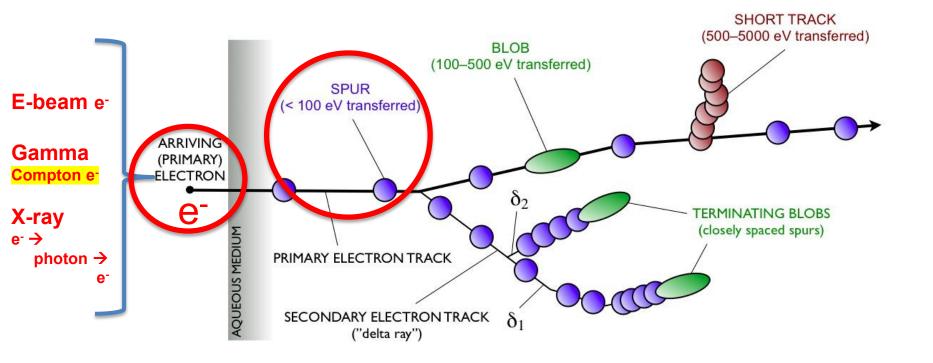
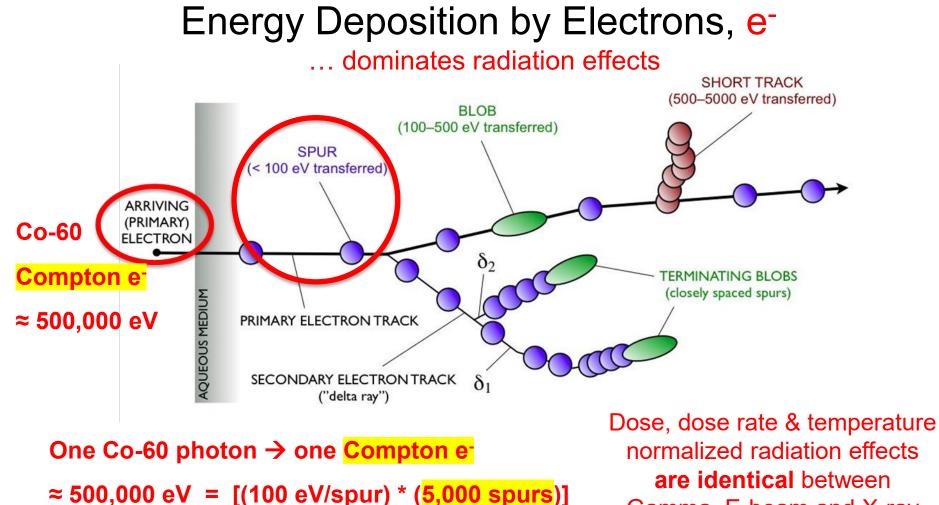





Figure 2.2.5 Compton Scattering

Energy Deposition by Electrons, e⁻

Gamma, E-beam and X-ray

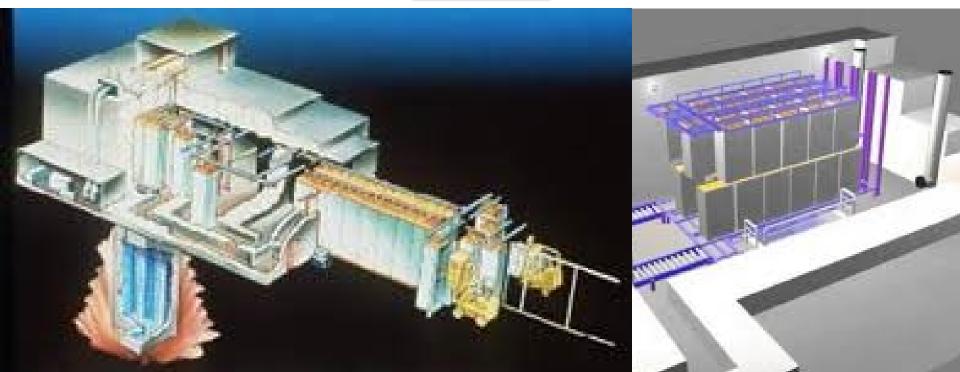
American		Gid Co	Ontents ossary of equivalent standards ommittee representation ockground of AAMI adoption of ISO 11137-1:2006	vi
National Standard	ANSI/AAMI/ISO 11137-1:2006		reword roduction Scope Normative references Terms and definitions Quality management system elements	xi 1 2 2
• Exercise: inte	→ 'follow the electrons' erpret guidance in ISO 11137 rad nce – AAMI TIR17: material compa		control of nonconforming product control of nonconforming product control of nonconforming product	9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10
	erilization of health care	8.2 8.3 8.4 9 9.1 9.2 9.3 9.4	Establishing the sterilization dose. Specifying the maximum acceptable dose and the sterilization dose. Transference of maximum acceptable, verification, or sterilization dose between radiation sources Validation Installation qualification Operational qualification Performance qualification	13 14 14 14 14 15 16

products—Radiation— Part 1: Requirements for development, validation, and routine control of a sterilization process for medical devices

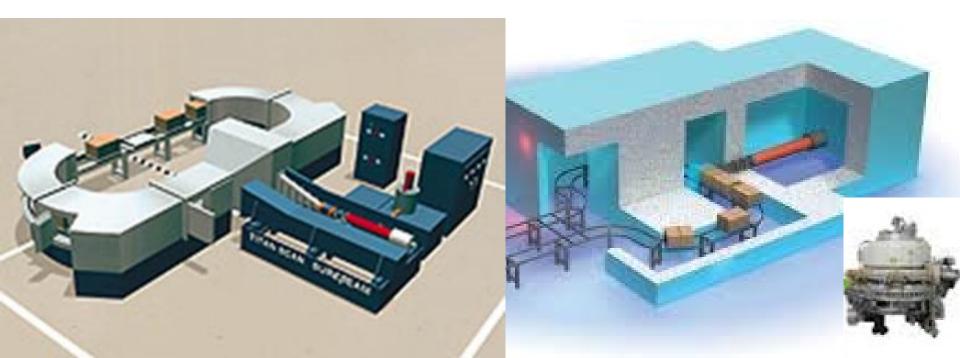
8.2 8.3 8.4	13 13 Establishing the sterilization dose 13 Specifying the maximum acceptable dose and the sterilization dose 13 Transference of maximum acceptable, verification, or sterilization dose between 13 radiation sources 14
9 9.1 9.2 9.3 9.4	Validation 14 Installation qualification 14 Operational qualification 15 Performance qualification 16 Review and approval of validation 16
10	Routine monitoring and control
11	Product release from sterilization
12 12.1 12.2 12.3 12.4 12.5	Maintaining process effectiveness 19 Demonstration of continued effectiveness 19 Recalibration 21 Maintenance of equipment 21 Requalification of equipment 22 Assessment of change 22
Annex	A (informative) Guidance
Bibliog	raphy

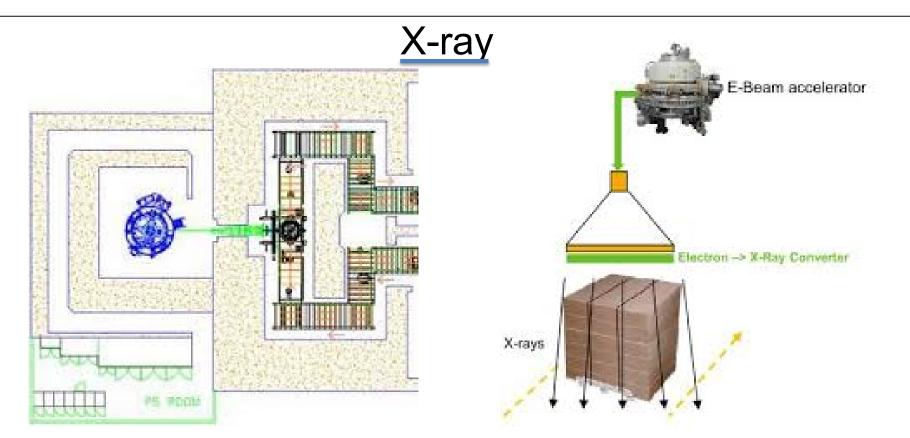
American

Contents	Page
Glossary of equivalent standards	iv
Committee representation	vi


8.4	Transference of maximum acceptable, veri					
	radiation sources			14		
9	Validation					
9.1	Installation qualification					
9.2	Operational qualification					
9.3	Performance qualification					
9.4	Review and approval of validation					
10	Routine monitoring and control					
11	Product release from sterilization					
12	Maintaining process effectiveness			19		
12.1	Demonstration of continued effectiveness					
12.2	Recalibration					
12.3	Maintenance of equipment					
12.4	Requalification of equipment					
12.5	Assessment of change					
Annex	A (informative) Guidance			23		
	process for medical devices		Annex A (informative) Guidance Bibliography			

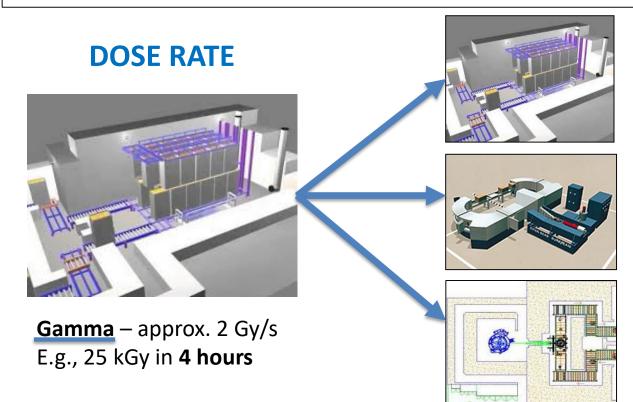
8.4.1 Transference of maximum acceptable dose


In transferring a maximum acceptable dose to a radiation source different from that on which the dose was originally established, an assessment shall be made demonstrating that differences in irradiation conditions of the two radiation sources do not affect the validity of the dose. The assessment shall be documented and the outcome shall be recorded (see 4.1.2).


Abstract: Specifies requirements for validation, process control, and routine monitoring in the radiation sterilization for health care products. It applies to continuous and batch type gamma irradiators using the radionuclides 60 Co and 137 Cs, and to irradiators using a beam from an electron or X-ray generator.

Electron Beam (E-beam)

8.4.1 Transference of maximum acceptable dose


A.8.4 Transference of maximum acceptable, verification, or sterilization dose between radiation sources

A.8.4.1 <u>Transference</u> of maximum acceptable dose

The assessment of the validity of the maximum acceptable dose for a radiation source other than that on which the dose was originally established should take into consideration dose rate and product temperature during irradiation. For example, the higher the dose rate, the lower the unwanted effects upon product.

A product qualified at a low dose rate (gamma or X-rays) will typically require minimal qualification to demonstrate material compatibility at a higher dose rate (electron-beam). Conversely, a material qualified at a high dose rate may require more substantial qualification in the low dose rate application.

If dose rate and product temperature are equivalent, transfer between the same type of radiation sources is appropriate.

Gamma – approx. 2 Gy/s E.g., 25 kGy in 4 hours Delta is 3-4 Orders of magnitude E-beam – approx. 6,000 Gy/s E.g., 25 kGy in 4 seconds

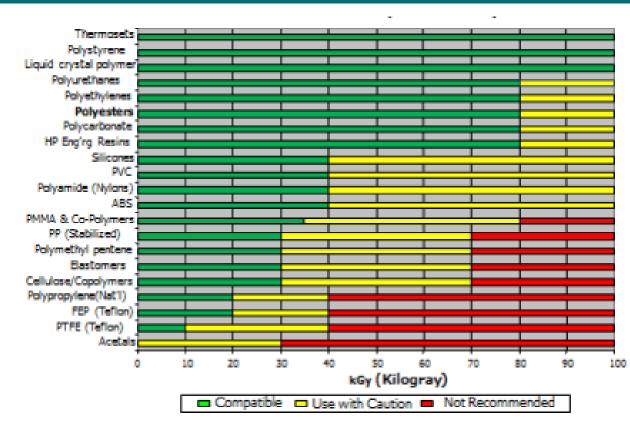
X-ray – approx. 10–1,000 Gy/s E.g., 25 kGy in **1 min to 1 hour**

8.4.1 Transference of maximum acceptable dose

In transferring a maximum acceptable dose to a radiation source different from that on which the dose was originally established, an assessment shall be made demonstrating that differences in irradiation conditions of the two radiation sources do not affect the validity of the dose. The assessment shall be documented and the outcome shall be recorded (see 4.1.2).

Differences in irradiation conditions

- 1. Dose rate why is this important? C/o radiation-oxygen effects
- 2. Temperature important c/o product sensitivities, e.g., T_g
- 3. Environment an inert gas, e.g., N_2 , in a non-permeable package can mitigate radiation-oxygen effects


AGENDA

- Fundamentals → 'follow the electrons'
- Exercise: interpret guidance in ISO 11137 radiation sterilization standard
- Practical guidance AAMI TIR17: material compatibility potential & pitfalls
- Summary

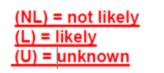
AAMI TIR 17:2017

Compatibility of Materials Subject to Sterilization

- 1. Material Selection Guidance
- 2. Material Processing & Design Considerations
- 3. Clinically Relevant Material Testing
- 4. Accelerated Aging Programs

AAMI TIR 17:2017

Compatibility of Materials Subject to Sterilization


 $(\bullet) = poor$

(• •) = fair

) = aood

) = excellent

- 1. Material Selection Guidance
- 2. Material Processing & Design Considerations
- 3. Clinically Relevant Material Testing
- 4. Accelerated Aging Programs

Annex A - Radiation

Circles represents the grade of material compatibility for each material

Materials are graded on single use cycle which is less than 50 kGy. This label indicates whether materials are likely to be compatible after multiple sterilization cycles (<100kGy) 3. Selection of materials

Table 1 - Material compatibility table, given a single processing

Table I Key: (●) = poor; (● ●) = fail	63	Classes 3 Familie f Materia	S	iven a single xcellent; (U) =	unknown	Hydrogen	
Material				Moist heat	Dry heat	peroxide	Ozone
Thermoplastics							
Acrylonitrile butadiene styrene (A	ABS)	•••	••••	● to ●●	● to ●●	• • • •	••
Fluoropolymers							
Polytetrafluoroethylene (PTFE)		•	••••	••••	••••	••••	••••
Perfluoro alkoxy (PFA)		•		••••	••••		••••
Perchlorotrifluoroethylene (PCTFE)		• • to	••••	•••	•••	••••	••••
Polyvinyl fluoride (PVF)			••••	• • to • • •	• • to • • •	••••	U
Polyvinylidene fluoride (PVDF)		● ● to	••••	•••	•••	••••	••••
Ethylenetetrafluoroethylene (ETFE)	e	• • to	••••	•••	•••	••••	••••
Fluorinated ethylene propy (FEP)	lene	••	••••	••••	••••	••••	••••
Polyacetals (e.g., polyoxymethyle	ene)	•	••••	• • to • • •	• • to • • •	••••	•••
Polyacrylates (e.g., polymethylmethacrylate)		• • to	••	● to ●●	● to ● ●	••	•••
Polyamides (e.g., nylon)		• • to	••••	• to	• to	•••	•••
Polycarbonate (PC)		• • • to • • • •	•••	• to • • •	••	••••	••••

AAMI TIR 17:2017

Compatibility of Materials Subject to Sterilization

- 1. Material Selection Guidance
- 2. Material Processing & Design Considerations
- 3. Clinically Relevant Material Testing
- 4. Accelerated Aging Programs

Examples:

- Processing conditions: Impact strength decreases by 20 times in ABS material simply by lowering the mold temperature from 185°F to 85°F
- Polymer Molecular Weight, MWD
- Additives

AAMI TIR 17:2017

Compatibility of Materials Subject to Sterilization

- 1. Material Selection Guidance
- 2. Material Processing & Design Considerations

3. Clinically Relevant Material Testing

4. Accelerated Aging Programs

Case Study # 1

PTFE is on the bottom of everyone's list of radiation compatible materials

An e-beam sterilized PTFE coating on a stainless steel wire does not fail

... What are the clinically relevant stresses?

Case Study # 2

Polyamide / Polyether blends are relatively high on the list of radiation compatible materials

An e-beam sterilized polyester blend balloon catheter fails ... What are the clinically relevant stresses?

Passion for patients Driving collaborative innovation Kilmer Community 2019

OBJECTIVE – facilitate success: Gamma → E-beam / X-ray

Leverage fundamental scientific realities of ionizing radiation

Ops

Optimally apply practical industry guidance

AGENDA

- Fundamentals → 'follow the electrons'
- Exercise: interpret guidance in ISO 11137-1 radiation sterilization standard
- Practical guidance AAMI TIR17: material compability potential & pitfalls
- Summary



Passion for patients Driving collaborative innovation Kilmer Community 2019

Gamma

- Mechanism of energy deposition is ' identical – 'follow the electrons'
- Irradiation time & temperature need to be managed per ISO 11137-1

- A given manufacturer with controlled materials and processes can have confidence in conversion from gamma sterilization to e-beam / x-ray sterilization
- CAUTON leveraging material compatibility data broadly without due diligence

Passion for patients Driving collaborative innovation Kilmer Community 2019

Gamma to e-beam/x-ray: fundamentals to practice

Byron J. Lambert, PhD Byron.lambert@abbott.com

‡ Fermilab

Fermi National Accelerator Laboratory

Midwest Medical Device Sterilization Workshop

ANSI/AAMI/ISO 11137-1:2006

8.4.2 Transference of verification dose or sterilization dose

8.4.2.1 Transference of a verification dose or a sterilization dose to a radiation source different from that on which the dose was originally established shall not be permitted unless:

- **Dose audit** a) data are available to demonstrate that differences in operating conditions of the two radiation sources have no effect on microbicidal effectiveness
 - or
 - b) 8.4.2.2 or 8.4.2.3 applies.

ANSI/AAMI/ISO 11137-1:2006

8.4.2 Transference of verification dose or sterilization dose

8.4.2.1 Transference of a verification dose or a sterilization dose to a radiation source different from that on which the dose was originally established shall not be permitted unless:

- **Dose audit** a) data are available to demonstrate that differences in operating conditions of the two radiation sources have no effect on microbicidal effectiveness
 - or
 - b) 8.4.2.2 or 8.4.2.3 applies.

Product with no water: 8.4.2.2

- **8.4.2.2** For product that does not contain water in the liquid state, transference of the verification dose or sterilization dose is permitted between:
- 25 kGy in 4 hr a) one gamma irradiator and another gamma irradiator,
- 25 kGy in 4 sec b) one electron beam generator and another electron beam generator
 - or
 - c) one X-ray generator and another X-ray generator.

ANSI/AAMI/ISO 11137-1:2006

8.4.2 Transference of verification dose or sterilization dose

8.4.2.1 Transference of a verification dose or a sterilization dose to a radiation source different from that on which the dose was originally established shall not be permitted unless:

- **Dose audit** a) data are available to demonstrate that differences in operating conditions of the two radiation sources have no effect on microbicidal effectiveness
 - or
 - b) 8.4.2.2 or 8.4.2.3 applies.

Product with no water: 8.4.2.2 For product that does not contain water in the liquid state, transference of the verification dose or sterilization dose is permitted between:

- 25 kGy in 4 hr a) one gamma irradiator and another gamma irradiator,
- 25 kGy in 4 sec b) one electron beam generator and another electron beam generator
 - ог
 - c) one X-ray generator and another X-ray generator.

Product with water: 8.4.2.3

- **8.4.2.3** For product that contains water in the liquid state, transference of the verification dose or sterilization dose is permitted between:
- a) one gamma irradiator and another gamma irradiator,

Dose rate actors of 10 or b) less can make a difference or

-) two electron radiation sources operating under identical operating conditions
- c) two X-ray radiation sources operating under identical operating conditions.

Ordinary Light	2eV
Bond Energy	4eV
Metal ionization potential	10Z eV
CRT, TV	25,000eV = 25keV
Co-60 gammas	1,250keV = 1.25MeV
Electron Accelerators	0.2 - 15MeV

