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PEP-Il Rf System Design
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PEP-Il Rf Parameters
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Digitally controlled analog
LLRF system

- comb filter is digital

Baseband processing in the
analog chain

Rf voltage regulated using
HV (no mod-anode)

Piston tuners run by stepper
motors.

Input for phase control by
LFB system (low-frequency
kKicker)
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Why are fast & Comb-filter feedbacks needed?

= Cavity detuning for match to klystron:
Do = (DrIOR
D =
V. O

- for PEP-Il HER R/Q = 120 Q, V. =700 kV, 1Io=2 A: wp/(2m) > 160 kHz (negative), > 136 kHz.
- Robinson unstable once revolution frequency is crossed.
- (not crossing the rev. harmonic is no guarantee for stability, though!)

= Make V. larger and/or R/Q smaller to avoid this?

- impractical for r/t cavities, to much power dissipation (KEKB ARES comes close, though)
- s/c cavities in principle can do this.

= Use rf feedback to suppress impedances.
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Feedback Parameters

= Gain for direct loop is limited by group delay (= 17 dB in PEP-II case)
= small group delay is difficult
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- PEP-II klystrons spec’d for 150 ns (c/f 600 ns, APS klystrons (352 MHz, 1.1 MW))

— direct loop electronics < 100 ns
- rf and cable runs
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Comb Filter

= Comb filter loop to make up the rest
- the trick is to get the correct phase at each synchrotron harmonic, phase flip in between
- in practice, we used a double comb peaked at v, sidebands (avoid amplifying rev. harmonics)

- can get another 20...30 dB
Jrev,
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Combined effect
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“Woofer”

= Direct & comb filter were not sufficient for low-lying, negative modes at higher
beam currents (= 1 Aor so)

= Use a direct link from the LFB system into the rf system, adjusting the rf
phase

- =1 MHz bandwidth (up to maybe mode +6)

= in principle can reduce effect of rf noise (mode 0) as well
- in practice, better to fix at the source (klystron), maybe using ripple compensation.
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Gap transients

= Never(!) enough klystron power to compensate transients from gaps in beam
- pre-compensate rf reference so LLRF would not try to compensate; adjusting to beam

conditions.

- operationally, we could increase beam current by reducing gap length (5% => 1%).
- slightly larger detuning than optimal gives the transient 1st-order behavior.

= Schemes like guard bunches to compensate gaps cause beam-beam issues

In colliders.
- either too much beam-beam
- or (if non-colliding) too little
- short lifetime, high background

Measured HER and LER Beam Current and Phase 12-Jun-2000 14:07:24
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Parked Cavities

= QOccasionally one is forced to run with some stations off.
- tune rf cavities in pairs to £ 2.5 revolution harmonics to minimize impedance
- pairwise detuning cancels the imaginary(?) part of the (uncontrolled) impedance.
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Practical Experience

= The strong feedback loops are very sensitive to transients.

- due to high loop gain, transients tend to cause relatively quick changes of rf voltage ->
reflected power -> station trip

= Ramping a station up initially very slow

- Turn rf on with no feedback & moderate rf voltage

- ramp up loop gains (very slowly to avoid trips)

- raise gap voltage slowly to control transients.

- It turned out much faster to run the stations up with loops set at no-beam settings.
= ac ripple a significant limit on performance

- gain of klystron varies -> loop gain varies -> cannot operate too close to the limit

- needs to be taken care of at the LLRF level

- solid-state rf power amplifiers do not have this issue.
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Dynamics of Analog Circuitry

= Any noise or transient can cause klystron saturation: game over!

Measured Klystron Saturation Curve HR85 16-Jun-2000
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Trips from Transients

= |rregularities in the cavity probe signals initially a significant source of rf trips.

— drop in probe signal not due to arc, causes large increase in klystron power to compensate
- this leads to reflected power in other cavities -> trip.

- reduced by masking short drop-outs.
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HER 12-6 Aborts

Probe signal masked in LLRF

« Masked cavity A probe in the
LLRF system on 7/22 to
ignore such a fast change in
signal.

« Station has not aborted on
such a fault since.

« Signal is dropping out
somewhere in the probe
signal path and recovers
within 10 us — cavity probe,
cable or coupler in LLRF rack.

),
0.4000 1

0.1000

-0.2000

-0.5000 T T T
15.0 18.8 225 26.3 30.0
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Tuning of the LLRF System

= Online fit of linear model allows to optimize loop gains and phases:

- Iterative online procedure would
setup loops

now I'm getting a bad feeling about this...

Figure 1

13 147 15.4628 0.837636 -5.09e-09
Optimization teminated successfully:
Current search direction is a descent direction, and magnitude of

directional derivative in search direction less than 2*options.TolFun

direct loop gain by 2.2463 dB

direct loop phase by -1.3447 degrees
comb loop gain by 0.15029 dB

comb loop delay by 5.5295 ns

comb loop phase by -8.1136 degrees
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Modeling of the Rf Dynamic

= System modeled in MatLab/Simulink during PEP-II construction
- Time-domain modeling code
- Cavity model, klystron model including some nonlinearities, saturation

= Nowadays, elegant may be able to do similar modeling
- rfmode element, beam-cavity interaction, feedback loops (direct & comb).
- true multibunch modeling, parallelized version exists.
- not presently in elegant: klystron model, saturation, gain variation
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Some General Design Considerations

Minimize the delays in the rf system (klystron, cabling, electronics)
- can a fully digital system achieve minimal delay?

Minimize the noise on the klystron output, phase-stabilize klystron

- allows running closer to saturation
Consider the effect of limited collector power on the output capability
Gap transients will be a fact of life;

- matching the transients of hadron and electron rings may be tricky
- even if matched, large transients may limit achievable beam current

Harden system against effects of transients
- Redundant cavity probes may be important in reducing spurious trips.
- Amplitude limiters (maybe with soft clipping)
- Avoid overdriving mixers lest they produce phase rotations.
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Conclusion

= Feed-back controlled rf worked, eventually worked well.
- significant tuning effort
- system remained sensitive to transient disturbances

= Optimal performance at PEP-II required

- Suitable diagnostics in the LLRF system (network analyzer, fault-file history, modeling of
beam-cavity interaction)

- Operating the klystrons not too close to saturation (affects collector power)
- Compensation of ps ripple for klystron amplifiers

- Ability to ride through transients in the signals from the cavity

- Detailed modeling in the design stage to anticipate performance

= Larger rings will be more challenging
- detuning is stronger (relative to revolution frequency)
- synchrotron frequency is lower (sidebands closer together)
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Credits

Design and operation of the PEP-II rf systems was enabled by many:
Design: M. Allen, H. Schwarz, R. Rimmer, M. Neubauer, P. Corredoura, R. Tighe

Operation, improvements (esp. LLRF): P. Corredoura, D. Teytelman, C. Rivetta,
D. van Winkle, P. Mclintosh, J. Judkins & many others

Longitudinal feedback: D. Teytelman, J. Fox, S. Prabhakar, H. Hindi et al.

F. Pedersen (CERN) laid the foundation for the LLRF system during a
sabbatical at SLAC in 1992. The essence of the system architecture was
defined in SLAC-R-400, p. 192 ff (1992).

Several of the ideas were pioneered by D. Boussard at CERN in the 70s and
80s.

Apologies to all | forgot. It's been more than 10 years ago...
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