Stopped Pions ③ FNAL

M. Toups 9/4/19 North States and a state of the state of the

PIP-II will support a world-leading neutrino program @ FNAL

- Key high-level metrics for SC LINAC:
 - 2 mA (few µs average) @ 800 MeV
 - Injects 20 µA (average) into the Booster (1.1% duty factor)
 - Adequate for 1.2 MW @ 120 GeV (LBNF) + 80 kW @ 8 GeV
 - 1.6 MW @ 800 MeV with 20-100% duty factor (10 mA peak) additional beam available when upgraded to CW

Will be among the highest-power ~GeV proton beams in the world

PIP-II will support a world-leading neutrino program @ FNAL

- Key high-level metrics for SC LINAC:
 - 2 mA (few µs average) @ 800 MeV
 - Injects 20 µA (average) into the Booster (1.1% duty factor)
 - Adequate for 1.2 MW @ 120 GeV (LBNF) + 80 kW @ 8 GeV
 - 1.6 MW @ 800 MeV with 20-100% duty factor (10 mA peak) additional beam available when upgraded to CW

Will be among the highest-power ~GeV proton beams in the world → What else can we do with all this beam?

PIP-II stopped π source driven by 1.6 MW 800 MeV proton beam

Extensive particle physics program:

- Sterile neutrino searches (v_e appearance)
- Neutrino non-standard interactions, neutrino magnetic moment
- Standard Model tests (e.g. weak mixing angle)
- Charged current cross section measurements

Key source features for this physics:

- High flux (flux increases as 1/L²)
- Well understood v energy spectrum, flavor content

PIP-II stopped π source driven by 1.6 MW 800 MeV proton beam

Extensive particle physics program:

- Sterile neutrino searches (v_e appearance)
- Neutrino non-standard interactions, neutrino magnetic moment
- Standard Model tests (e.g. weak mixing angle)
- Charged current cross section measurements
- Light Dark Matter Searches
- Coherent elastic neutrino-nucleus scattering

Stopped π experiments have best limits on light dark matter at low masses

Can a PIP-II beam dump experiment with excellent cosmic rejection and angular resolution improve on LSND limits?

- PIP-II will have twice the power, but can only accommodate 20% duty factor vs. 7.2% at LAMPF/LSND
- Beam dump detector at PIP-II can be at ~arbitrary location and have large mass vs. LSND (100 tons @ 30 m downstream)
- Since y scales as the square root of the exposure, need at least a factor of 100 (3x more POT, 30x more mass/ acceptance?) for same signal sensitivity at 10x lower y
- Improved sensitivity to light dark matter models via neutrino electron scattering also implies improved sensitivity to NSIs, neutrino magnetic moment, weak mixing angle, etc.

Accumulator Ring Extension of PIP-II Physics Program @ FNAL

- Coherent elastic neutrino-nucleus scattering (CEvNS) provides a rich particle physics program all by itself
 - Light dark matter searches
 - Sterile neutrino searches (v_x disappearance)
 - Neutrino non-standard interaction (NSI) searches
 - Precision electroweak measurements
 - Neutrino magnetic moment searches
- Low threshold neutrino scattering experiments to detect CEvNS extremely difficult without small duty factor to reject backgrounds
- Program fully realized only if protons are compressed into sub-µs pulses with duty factors ∈ [10⁻⁵-10⁻⁴]

Can optimize source for particle physics (not neutrons)

Example: 100-ton LAr Detector @ 20-40 m

- Sensitivity (N_X~α_De⁴/m_A^{,4}) to benchmark light "vector portal" directly annihilating thermal dark matter model
 - Assuming a threshold of 20 keVnr, expect 1000 nuclear recoil events in the 3-30 MeV range at relic density targets
 - Assuming LSND-like energy and angular resolutions for electron energies E_e ∈ [18-50 MeV], electron scattering limits may probe relic density targets (x10 signal sensitivity)
 - Simultaneously allows sensitivity to NSIs, weak mixing angle, neutrino magnetic moments
 - Beam dump (unlike missing mass/momentum) experiments are sensitive to α_D and can also probe dark sector structure
- O(1M) CEvNS events/year
 - Allows smoking-gun neutral current sterile neutrino search (vx->vs disappearance)
 - Also measure NSIs, neutrino magnetic moments, etc.

Light dark matter search driven by O(10) GeV PIP-III proton RCS

- Current BNB light dark matter search ideas propose adding a beam dump to reduce v backgrounds seen in MiniBooNE's dark matter run
- PIP-II era Booster will increase 8 GeV beam power by factor of ~2, but PIP-III Rapid Cycling Synchrotron (RCS) replacement will be able to simultaneously support 2.3 MW @ 120 GeV for LBNF/DUNE and 0.4-1 MW @ 11 GeV for BNB
- Extends signal sensitivity to 5x lower values of y for vector portal dark matter models
- Also, improved sensitivity to e.g. hadrophilic dark sector

Concluding Remarks

- What set of facilities is Fermilab going to build after completing the program laid out in the 2014 P5 report?
- We need to think bigger than parasitic searches as we prepare for the next Snowmass in 2021
- PIP-II is upgradable to a 1.6 MW, 800 MeV CW proton beam, but needs a physics program
- PIP-II LINAC could support a beam dump experiment with a broad physics program including searches for light dark matter, NSIs, neutrino magnetic moments, sterile neutrinos, etc.
- In order to extend this program even further to include CEvNS, need to build a proton storage ring at FNAL to reduce beam duty cycle. Should FNAL push for this at the next Snowmass?

End

Estimated cost of PIP-II: ~\$600 M in 2020 dollars

SNS Cost Breakdown

Cost Development between 2001 and 2006

	SPALLATION NEUTRON SOURCE			
	Nov 2001 [\$M]	May 2006 [\$M]	Contingency	
1.01 Research & Development	103.8	99.9	-3.8%	
1.10 Operations	115.2	119.1	3.4%	
Fotal OPC (Burdened, Escalated Dollars)	219.0	219.0	0.0%	
1.02 Project Support	72.3	72.1	-0.3%	
1.03 Front End Systems	19.3	20.8	7.9%	
1.04 Linac Systems	272.4	311.0	14.2%	
1.05 Ring & Transfer System	146.2	146.6	0.3%	
1.06 Target Systems	95.3	1 1 4.9	20.5%	
1.07 Instrument Systems	62.3	63.9	2.6%	
1.08 Conventional Facilities	310.7	398.5	28.3%	
1.09 Integrated Control Systems	58.6	58.5	-0.1%	
Fotal Line Item (Burdened, Escalated Dollars)	1037.0	1186.3	14.4%	

EPAC 2006- Edinburgh

Norbert Holtkam, "The Spallation Neutron Source - Status and Applications"

52

Neutrino Production at Stopped π sources

Locations of Decay-at-rest Neutrino "Beams"

Adapted from K. Scholberg

Stopped π Beam Figures of Merit

Facility	Proton Energy (GeV)	Power (MW)	Bunch Structure	Rate
LAMPF	0.8	0.8	600 µs	120 Hz
Lujan	0.8	0.08	290 ns	30 Hz
ISIS	0.8	0.16	2 x 100 ns	50 Hz
SNS	1.0	1.4	700 ns	60 Hz
MLF	3	1	2 x 100 ns (540 ns apart)	25 Hz
CSNS	1.6	0.1	<500 ns	25 Hz
ESS	2.5	5	2.86 ms (~1.3µs with PSR)	14 Hz
PSI	0.6	1.4	CW	CW
BNB	8	0.032	1.6 µs	5 Hz
PIP-II LINAC	0.8	1.6	CW	CW

Adapted from K. Scholberg

Stopped π Beam Figures of Merit

Facility	Proton Energ (GeV)	y Power (MW)	Bunch Structure	Rate
LAMPF	0.8	0.8	600 µs	120 Hz
Lujan	0.8	0.08	290 ns	30 Hz
ISIS	0.8	0.16	2 x 100 ns	50 Hz
SNS	1.0	1.4	700 ns	60 Hz
MLF	3	1	2 x 100 ns (540 ns apart)	25 Hz
CSNS	1.6	0.1	<500 ns	25 Hz
ESS	2.5	5	2.86 ms (~1.3µs with PSR)	14 Hz
PSI	0.6	1.4	CW	CW
BNB	8	0.032	1.6 µs	5 Hz
PIP-II LINAC	0.8	1.6	CW	CW
			Adapted from	n K. Scholberg

Higher power — Larger flux

Stopped π Beam Figures of Merit

Facility	Proton Energy (GeV)	Power (MW)	Bunch Structure	Rate
LAMPF	0.8	0.8	600 µs	120 Hz
Lujan	0.8	0.08	290 ns	30 Hz
ISIS	0.8	0.16	2 x 100 ns	50 Hz
SNS	1.0	1.4	700 ns	60 Hz
MLF	3	1	2 x 100 ns (540 ns apart)	25 Hz
CSNS	1.6	0.1	<500 ns	25 Hz
ESS	2.5	5	2.86 ms (~1.3µs with PSR)	14 Hz
PSI	0.6	1.4	CW	CW
BNB	8	0.032	1.6 µs	5 Hz
PIP-II LINAC	0.8	1.6	CW	CW

Adapted from K. Scholberg

- - Also addressed by going underground or beam-off subtraction

Stopped π Beam Figures of Merit

Adapted from K. Scholberg

 $1 \lesssim 2.2 \ \mu s$ bunch structure $\longrightarrow \pi/\mu$ DAR v separation