

ICARUS geometry description in LArsoft

ICARUS Collaboration meeting September 12th, 2019

C. Hilgenberg (CSU), A. Menegolli (Univ. And INFN Pavia)

Outline

- > Description of the present status ICARUS geometry description.
- ➤ Introduction of Induction 1 plane split wires.
- New feature of CRT description.
- Next steps.

- ➤ The ICARUS T600 geometry, the CRT and the ICARUS building are described within LArsoft framework using Geant4 gdml geometry files.
- The present status foresees:
 - ➤ Correct size, mass and positioning of all external shells (cryostat, thermal insulation, warm vessel).
 - Correct PMT description (active + passive part).
 - Lateral mechanical structure (stainless steel).
 - ➤ All merged within a perl file including CRT description python script (by C. Hilgenberg).

Cathode panel made of 64 stainless-steel strips (Width = 2.1 cm, Pitch = 5.0 cm) → good compromise choice to have the correct cathode transparency to scintillation light (58%), with a limited number of geometry objects.

➤ 360 8" hemispherical window PMTs placed in the correct position behind the wire planes.

PMT wall geometry + stainless steel structure

- Aluminum Cryostat: 19 cm thick; total mass 39 tons, volume of the shell = 58.6 $m^3 \rightarrow \rho = 0.665 \text{ g/cm}^3$;
- ightharpoonup thermal insulation: 60 cm thick; full polyurethane, ho = 0.9 g/cm³;
- warm vessel: 27.4 cm thick; made of steel, total mass 88 tons, volume of the shell = 228.9 m³ $\rightarrow \rho$ = 0.384 g/cm³;
- correct distances between cryostats and thermal insulation.

Detector Enclosure with (from outer to inner):

- CRT (light green);
- Warm vessel (red);
- Thermal insulation (blue);
- Cryostat (lilac);
- > TPC (green).

- Attempt to insert the split wires for Induction 1 plane.
- ➤ Larsoft does not allow more than one type (Coll, Ind1, Ind2) of wire plane for TPC -> impossible to directly halving Induction 1 wire length and put two Induction 1 planes in the old TPC volume.
- Major intervention on TPC wire definition and on TPC structure necessary.
- One TPC volume is now defined (volTPC0), with upstream racetrack on one side only and longitudinal size halved with respect to the «true» TPC volume:

- ➤ volTPCO is copied four times and, after proper translations and rotations, correcly placed inside the cryostat → four adiacent TPCs.
- In this way race tracks volumes are put in the TPC volume (easier to avoid overlaps with cryostat volumes), but their length is halved.

- > The idea for the three wire planes on the «shorter» TPC0:
 - Induction 1 (volTPCPlaneY) : 1056 wires (as it must be).
 - Induction 2 and Collection (volTPCPlaneV &U): 3064 wires.
 - 2056 wires with common length.
 - 480 corner wires with decreasing length at one side.
 - > 528: 480 corner wires + 48 wires to complete the plane at the other side.

- The idea for the three wire planes:
 - ➤ Induction 1 (volTPCPlaneY) : 1056 wires (as it must be).
 - Induction 2 and Collection (volTPCPlaneV &U): 3064 wires.
 - 2056 wires with common length.
 - > 480 corner wires with decreasing length at one side.
 - > 528: 480 corner wires + 48 wires to complete the plane at the other side.

Collection + Induction2 planes: 480 + 2056 + 528 + 2056 + 480 = 5600 wires

CRT Module Description: last changes

- Bottom CRT no changes.
- > Top CRT:
 - Previously used 1.5 cm thickness for top and bottom layers.
 - Now reflects reality w/bottom layer 1.5cm, top layer 1cm thick.

Side CRT:

- Need to cut some modules to fit.
- South wall Y-layer now consists of half modules.
- North wall consists entirely of cut modules, 3 different lengths.

Removable hooks Al cover + foam Scintillator layer (10 mm) Foam layer Scintillator layer (15mm)

Al bottom + foam Front End Board

Changes to Configuration

Cold vessels
Active volume

Top:

- top CRT is offset in the z by ~3m.
- Small gap between rim and roof due to I-beams.

Changes to Configuration

Cold vessels
Active volume

South Wall:

- X-Y maintained
- 2 rows offset for stairs
- Vertical modules cut in half

North Wall:

- Yields to cryo. introducing large hole
- Now X-X configuration.
- Modules cut, 3 different lengths

Current Geometry

CRT
Warm Vessel
Top CRT Support I-beams

Reference drawing from CAD model

- ➤ GDML description now current with latest CAD drawings.
- ➤ TOP CRT support beams added should have significant impact on auto-veto rates, generation of secondaries.
- ➤ GDML generation script uses parametrization for module positioning for easy updating after installation, true positions measured.

Next steps

- Complete the inner detector mechanical structure (top/bottom stainless steel beams and pillars).
- Insert the small spacing between the Induction one horizontal (split) wire planes.
- Insert more details of the instrumentation placed outside the cryostats (chimneys, flanges etc.).