Shower Reconstruction

Yun-Tse Tsai (SLAC), Ryan Howell (Rochester) ICARUS Collaboration Meeting September 12th, 2019

Electromagnetic Showers

- Signature of ν_e appearance
- Background from beam intrinsic ν_{e} and π^{0} production

Wire coordinate (12m) CNGS beam

Important to reconstruct and characterize EM showers

EM Showers at SBN

 BNB ν_μ beam: neutrino energy peak around 800 MeV

 NuMI v_µ beam: neutrino energy peak around 8 GeV (on-axis); different energy spectrum for ICARUS (off-axis)

EM Showers at SBN

Run 1148 Event 778. August 6th 2015 17:16

40 cm

Shower Reconstruction

- Pandora pattern recognition based approach
 - 2D to 3D reconstruction
 - Shower characterization based on the particles recognized by pandora (this talk)
 - Currently the common reconstruction path with SBND for the oscillation measurement
- Machine learning based approach
 - 3D reconstruction
 - See Francois Drielsma and Laura Domine's talk

Shower Characteristics

- Geometric parameters
 - Starting point
 - Direction
 - Opening angle, length
- Calorimetric parameters
 - Energy
- Combined
 - dE/dx; particle identification
- Systematic uncertainty

SBN Shower Module

- A Tool based Reconstruction Algorithm for Characterizing Showers (TRACS)
- An interface with configurable algorithms for different shower characteristics
 - Flexible; also allow iterative approaches
- 3D clustered objects (PFParticles) as the input
- Baseline tools in place; more development underway
- Included in official LArSoft releases (larreco)
- Successfully tested in SBND, ICARUS (this talk)
- Initiated by the SBN shower group; a lot of work done by SBND folks (D. Barker, E. Tyley, D. Brailsford)

Baseline Algorithms

Baseline Algorithms

Baseline Algorithms

Monte Carlo Sample

- Dual-particle sample: $e+\pi^+$, 1000 events
 - Test the shower reconstruction performance
 - Has a vertex to mimic a neutrino interaction for pattern recognition
- Both the particles have momentum 0-1.5 GeV, peak at 0.3 GeV
- Both the particles mostly along the BNB beamline
- Latest reconstruction algorithms with deconvoluted TPC waveforms and baseline shower algorithms
- Match to the true particles and validate the reconstruction performance

Out of the Box Performance

Shower Purity

Shower Completeness

Shower Starting Point

Shower Direction

dE/dx

Main Challenges

• Pattern recognition

- Identify the interaction vertex
- Determine a particle to be a track or a shower
- Cluster hits and form a shower candidate accordingly
- Deal with Bremsstrahlung, etc.
- Hit finding from
 - complicated topologies
 - low energy deposits
- Energy reconstruction

Summary

- Shower reconstruction: An essential step towards $\nu_{\mu} \rightarrow \nu_{e}$ oscillation measurement
- A lot of progress on Pandora-based approach shared/coordinated with SBND
 - Good out-of-the-box performance with the ICARUS dual-particle MC sample
- SBN shower meeting: 10:30am CDT on Wednesdays fortnightly
 - Subscribe <u>sbn-shower@fnal.gov</u>
- We need your contributions!

Backup

20

Electron Momentum

Electron Direction

Pion Momentum

Pion Direction

Shower Purity

Shower Completeness

To Merge or Not To Merge

To Merge or Not To Merge

Energy Resolution

(Deposited E - Reconstructed E) / (Deposited E)

Energy Resolution Y Plane

Study on Recombination

- Quantify the recombination effect on shower energy reconstruction
- For electron showers with different energy, 200MeV to 2GeV, compare charges collected with the recombination effect to those without
- Conclude that a constant correction factor for the recombination effect is good

Outlook

- Deep learning technique to categorize each pixel into tracks or showers and thereby recover charges
- Understand charge distribution of each type of EM particles and correct for
 - residual hit finding and clustering inefficiency
 - partial contained showers: direction, energy, etc.

Categorizing each pixel into tracks vs showers

