

# Computer Vision and Machine Learning for ICARUS Physics Reconstruction

*Francois Drielsma*, Kazuhiro Terao, Laura Dominé SLAC National Accelerator Lab. ICARUS Collaboration Meeting @ FNAL September 12th 2019







#### **Computer Vision and** LArTPC Image Data Analysis

**Development Workflow** without Machine Learning

1. Write an algorithm based on physics principles



Neutrino interaction = collection of certain shapes

#### **Computer Vision and** LArTPC Image Data Analysis

SLAC

#### **Development Workflow** without Machine Learning

- 1. Write an algorithm based on physics principles
- 2. Run on simulation and data samples
- 3. Observe failure cases, implement fixes/heuristics
- 4. Iterate over 2 & 3 till a satisfactory level is achieved
- 5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.



#### Computer Vision and LArTPC Image Data Analysis



#### **Development Workflow** without Machine Learning

- 1. Write an algorithm based on physics principles
- 2. Run on simulation and data samples
- 3. Observe failure cases, implement fixes/heuristics
- 4. Iterate over 2 & 3 till a satisfactory level is achieved
- 5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

### **Machine Learning**

- "Learn patterns from data"
  - automation of steps 2, 3, and 4"
- "Chain algorithms & optimize"
  step 5 addressed by design
- "Deep Neural Network"
  - de-facto standard in computer vision



#### **Computer Vision + Machine Learning in Particle Imaging Neutrino Detectors**



#### **Computer Vision + Machine Learning in Particle Imaging Neutrino Detectors**



**NOvA Neutrino** 

Event Topology



**Neutrino Classification Score** 



x (mm

e



v (mm)



x (mm)

SLAC

π

LArTPC particle ID

μ

XT





#### **Computer Vision + Machine Learning for Image "Feature" Extraction**

Image Context Detection

- Identify object location (where)
- Identify object class (what)



### Computer Vision + Machine Learning for Reconstructing Hierarchical Feature Correlations

#### Interpret image context correlations





construction worker in orange safety vest is working on road.

https://cs.stanford.edu/people/karpathy/cvpr2015.pdf

#### ML-based LArTPC Data Reconstruction Big picture

SLAC

### ML-based Full Data Reconstruction Chain

- A hierarchical chain of task-specific algorithms
- 1. Key points (particle start/end) + pixel feature extraction
- 2. Vertex finding + particle clustering
- 3. Particle type + energy/momentum
- 4. Interaction ("particle flow") reconstruction
- 5. PMT-TPC signal "matching"



**Example**: pixel classification algorithm used in MicroBooNE to identify shower pixels, useful for nue interaction



TERAO, Kazurniro et al (2018). A Deep Neural Network for Pixel-Level Electromagnetic Particle Idel MicroBooNE Liquid Argon Time Projection Chamber, https://arxiv.org/pdf/1808.07269.pdf

#### **Output**: shower/track separation

#### **Example**: removal of mis-reconstructed 3D points



**Output**: mis-reconstructed points removed by Machine Learning



#### **Example**: removal of mis-reconstructed 3D points



**Reference**: mis-reconstructed points removed by truth info



**Next Goal: point prediction + particle clustering** on ICARUS sample (**warning**: below is for DUNE-ND)



#### Computer Vision + Machine Learning in ICARUS Plan Overview

SLAC

- **Goal**: maximize physics extraction from ICARUS data
- **Plan**: develop a reconstruction chain for physics feature extraction using machine learning algorithms
  - So far primarily 3D pattern recognition (3D points input)
     Can use other algorithms (WireCell, Pandora, etc.)
  - Starting on 2D image analysis (identical algorithms)
     Michel reconstruction (next talk) + data vs. simulation discrepancy study/mitigation during commissioning

**Team: anyone is welcome**, SLAC team consists of 6-8 people supported by three DOE grants dedicated for machine learning for LArTPC experiments (SBN/DUNE) + CSU faculty and graduate students (3-5)

 Further collaborations (ATLAS/LSST/outside HEP) for uncertainty estimates/optimization + distributed computing on High Performance Computing facilities

## Backup slides

#### **Computer Vision + Machine Learning for Pixel-wise identification**

SLAC

# **Segmentation segmentation**: pixel-wise identification performance in simulations

| Particle Type           | Pixel-wise accuracy |
|-------------------------|---------------------|
| Heavy ionizing particle | 99.3%               |
| MIP                     | 98.1%               |
| Shower                  | 99.2%               |
| Delta rays              | 97.2%               |
| Michel electrons        | 95.7%               |
| Total                   | 99.1%               |



DOMINE, Laura, & TERAO, Kazuhiro. (2019). Scalable Deep Neural Networks for Sparse, Locally Dense Liquid Argon Time Projection Chamber Data, <u>https://arxiv.org/abs/1903.05663</u>

#### Computer Vision + Machine Learning for Point proposal

# **Point proposal**: performance of identifying end points of tracks and start points of showers in simulations



DOMINE, Laura, & TERAO, Kazuhiro. (2018). Applying Deep Neural Network Techniques for LArTPC Data Reconstruction. Zenodo. http://doi.org/10.5281/zenodo.1300713