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Computer Vision and
LArTPC Image Data Analysis
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Development Workflow without Machine Learning

1. Write an algorithm based on physics principles

Neutrino interaction = collection of certain shapes
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Development Workflow without Machine Learning

2. Run on simulation and data samples

3. Observe failure cases, implement fixes/heuristics

4. Iterate over 2 & 3 till a satisfactory level is achieved

5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

https://arxiv.org/pdf/1808.07269.pdf
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Computer Vision and
LArTPC Image Data Analysis
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Machine Learning MicroBooNE

Simulation

« “Learn patterns from data”
- automation of steps 2, 3, and 4°

« “Chain algorithms & optimize”
- step 5 addressed by design
« “Deep Neural Network” I_,

- de-facto standard in computer vision




Computer Vision + Machine Learning in
Particle Imaging Neutrino Detectors
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Computer Vision + Machine Learning in
Particle Imaging Neutrino Detectors
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NOvVA Neutrino .
Event Topology LArTPC particle ID

“Whole Image Analysis”

.. may be the simplest way if it works!

W e Could we know where things fail (and how)?

e e Could we enforce physics principles (e.g. key

features like vertex, dE/dx, etc.) to be used?
.. yes, that’s our research!
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Computer Vision + Machine Learning for
Image “Feature” Extraction
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Image Context Detection
- Identify object location (where)
- Identify object class (what)
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Computer Vision + Machine Learning for
Reconstructing Hierarchical Feature Correlations
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Interpret image context correlations
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ML-based LArTPC Data Reconstruction
Big picture
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ML-based Full Data Reconstruction Chain
A hierarchical chain of task-specific algorithms

1. Key points (particle start/end) + pixel feature extraction

2. Vertex finding + particle clustering

3. Particle type + energy/momentum

4. Interaction (“particle flow”) reconstruction
5. PMT-TPC signal “matching”




Computer Vision + Machine Learning for
LArTPC Image Data Analysis

Example: pixel classification algorithm used in MicroBooNE
to identify shower pixels, useful for nue interaction

Input: data (MicroBooNE) Output: shower/track separation

MicroBooNE ‘ 3o0cm  MicroBooNE

Data ' ;E, l_’ Data
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dentirication In the

MlcroBooNE Liquid Argon T|me Projection Chamber, https://arxiv.org/pdf/1808.07269.pdf
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Computer Vision + Machine Learning for
LArTPC Image Data Analysis

Example: removal of mis-reconstructed 3D points

Input: reconstructed 3D points Output: mis-reconstructed points
removed by Machine Learning




Computer Vision + Machine Learning for
LArTPC Image Data Analysis

Example: removal of mis-reconstructed 3D points
Input: reconstructed 3D points Reference: mis-reconstructed
points removed by truth info
\\
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Computer Vision + Machine Learning for
LArTPC Image Data Analysis o s
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Next Goal: point prediction + particle clustering
on ICARUS sample (warning: below is for DUNE-ND)
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Computer Vision + Machine Learning in ICARUS
Plan Overview

o1 AR
Fhm N

Goal: maximize physics extraction from ICARUS data

Plan: develop a reconstruction chain for physics feature
extraction using machine learning algorithms

e So far primarily 3D pattern recognition (3D points input)
o Can use other algorithms (WireCell, Pandora, etc.)

e Starting on 2D image analysis (identical algorithms)
o Michel reconstruction (next talk) + data vs. simulation discrepancy
study/mitigation during commissioning

Team: anyone is welcome, SLAC team consists of 6-8
people supported by three DOE grants dedicated for machine

learning for LArTPC experiments (SBN/DUNE) + CSU faculty
and graduate students (3-5)

e Further collaborations (ATLAS/LSST/outside HEP) for uncertainty

estimates/optimization + distributed computing on High Performance
Computing facilities 1
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Computer Vision + Machine Learning for
Pixel-wise identification

Segmentation segmentation: pixel-wise identification
performance in simulations

Particle Type Pixel-wise accuracy

Heavy ionizing particle 99.3%

MIP 98.1%
Shower 99.2%
Delta rays 97.2%
Michel electrons 95.7%
Total 99.1%

DOMINE, Laura, & TERAO, Kazuhiro. (2019). Scalable Deep Neural Networks for Sparse, Locally Dense Liquid Argon Time
Projection Chamber Data, https://arxiv.org/abs/1903.05663
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Computer Vision + Machine Learning for
Point proposal

Number of ground truth points (excluding delta label points)

Point proposal: performance of identifying end points
of tracks and start points of showers in simulations

Distance from gt points to predicted points (zoom <10px ~ 93% of gt points) Distance from predicted points to closest gt points (zoom < 10px ~ 98% of pred points)
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DOMINE, Laura, & TERAO, Kazuhiro. (2018). Applying Deep Neural Network Techniques for LArTPC Data Reconstruction.
Zenodo. http://doi.org/10.5281/zenodo.1300713
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