Computer Vision and Machine Learning for ICARUS Physics Reconstruction

Francois Drielsma, Kazuhiro Terao, Laura Domine SLAC National Accelerator Lab. ICARUS Collaboration Meeting @ FNAL September 12th 2019

1

Computer Vision and LArTPC Image Data Analysis

Development Workflow without Machine Learning

1. Write an algorithm based on physics principles

Neutrino interaction $=$ collection of certain shapes

Computer Vision and LArTPC Image Data Analysis

Development Workflow without Machine Learning

- 1. Write an algorithm based on physics principles
- 2. Run on simulation and data samples
- 3. Observe failure cases, implement fixes/heuristics
- Iterate over 2 & 3 till a satisfactory level is achieved
- 5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Computer Vision and LArTPC Image Data Analysis

Development Workflow without Machine Learning

- 1. Write an algorithm based on physics principles
- 2. Run on simulation and data samples
- 3. Observe failure cases, implement fixes/heuristics
- 4. Iterate over 2 & 3 till a satisfactory level is achieved
- 5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Machine Learning

- "**Learn patterns from data**"
	- automation of steps 2, 3, and 4"
- "**Chain algorithms & optimize**" - step 5 addressed by design
- "**Deep Neural Network**"
	- de-facto standard in computer vision

Computer Vision + Machine Learning in Particle Imaging Neutrino Detectors

Computer Vision + Machine Learning in Particle Imaging Neutrino Detectors

NOvA Neutrino

Event Topology

Expect difficulty for highly detailed LArTPC images

 $\overline{\mathbf{M}}$ • … yes, that's our research! • Could we know where things fail (and how)? • Could we enforce physics principles (e.g. key features like vertex, dE/dx, etc.) to be used?

KT ackground

SLAC

 e \rightarrow γ μ π

LArTPC particle ID

 x (mm)

 0.45

 x (mm)

 v (mm)

Computer Vision + Machine Learning for Image "Feature" Extraction

Image Context Detection

- Identify object location (where)
- Identify object class (what)

SL AQ

Computer Vision + Machine Learning for Reconstructing Hierarchical Feature Correlations

Interpret image context correlations

construction worker in orange safety vest is working on road.

<https://cs.stanford.edu/people/karpathy/cvpr2015.pdf>

ML-based LArTPC Data Reconstruction Big picture

ML-based Full Data Reconstruction Chain

- A hierarchical chain of task-specific algorithms
- 1. Key points (particle start/end) + pixel feature extraction
- 2. Vertex finding + particle clustering
- 3. Particle type + energy/momentum
- 4. Interaction ("particle flow") reconstruction
- 5. PMT-TPC signal "matching"

Example: pixel classification algorithm used in MicroBooNE to identify shower pixels, useful for nue interaction

TERAO, Kazurhiro et al (2018). A Deep Neural Network for Pixel-Level Electromagnetic Particle MicroBooNE Liquid Argon Time Projection Chamber, <https://arxiv.org/pdf/1808.07269.pdf>

Example: removal of mis-reconstructed 3D points

Input: reconstructed 3D points **Output:** mis-reconstructed points removed by Machine Learning

Example: removal of mis-reconstructed 3D points

Input: reconstructed 3D points **Reference**: mis-reconstructed points removed by truth info

Next Goal: **point prediction + particle clustering** on ICARUS sample (**warning**: below is for DUNE-ND)

Computer Vision + Machine Learning in ICARUS Plan Overview

SL AC

- **Goal**: maximize physics extraction from ICARUS data
- **Plan**: develop a reconstruction chain for physics feature extraction using machine learning algorithms
	- So far primarily 3D pattern recognition (3D points input) ○ Can use other algorithms (WireCell, Pandora, etc.)
	- Starting on 2D image analysis (identical algorithms)
		- \circ Michel reconstruction (next talk) + data vs. simulation discrepancy study/mitigation during commissioning

Team: **anyone is welcome**, SLAC team consists of 6-8 people supported by three DOE grants dedicated for machine learning for LArTPC experiments (SBN/DUNE) + CSU faculty and graduate students (3-5)

14 ● Further collaborations (ATLAS/LSST/outside HEP) for uncertainty estimates/optimization + distributed computing on High Performance Computing facilities

Backup slides

Computer Vision + Machine Learning for Pixel-wise identification

SLAC

Segmentation segmentation: pixel-wise identification performance in simulations

DOMINE, Laura, & TERAO, Kazuhiro. (2019). Scalable Deep Neural Networks for Sparse, Locally Dense Liquid Argon Time Projection Chamber Data, <https://arxiv.org/abs/1903.05663>

Computer Vision + Machine Learning for Point proposal

Point proposal: performance of identifying end points of tracks and start points of showers in simulations

SLAC

DOMINE, Laura, & TERAO, Kazuhiro. (2018). Applying Deep Neural Network Techniques for LArTPC Data Reconstruction. Zenodo.<http://doi.org/10.5281/zenodo.1300713>