Fermilab **BENERGY** Office of Science

ICARUS DAQ: Status and Plans

Wesley Ketchum (FNAL) for the ICARUS DAQ Working Group

Outline

- The Data Acquisition Working Group, together with the common SBN Data Acquisition and Pre-Processing Working Group covers a broad range of responsibilities, including
 - Readout of the detector electronics, from the TPC, PMT, and CRT subsystems
 - Configuration and control of the data acquisition system
 - Interface with the Trigger and Timing systems for configuration, control, readout, and event synchronization
 - Online monitoring of data quality
 - Transfer of data to permanent storage

DAQ Software Framework

- ICARUS DAQ software uses the *artdaq* DAQ software framework developed and supported by Fermilab Scientific Computing Division
- Key improvements and feature additions in *artdaq* have been made at the request of SBN and other experiments
 - Greater flexibility in sorting the data collections in final output files to aid offline reconstruction passes
 - Full support for "BoardReader" software processes to send data collected from multiple unique hardware components
 - Control of DAQ processes without using MPI
 - Improvements in configuration database management

TPC DAQ

- TPC "Vertical Slice Test" of readout has been operating since this summer to support electronics testing and installation
- Running of the system has helped with improvements to the readout configuration
 - Proper extraction of front-end board number from data headers
 - Proper reset of buffers between successive runs
 - Improvements in the data handling
- DAQ handling throughput in excess of expected trigger rate (>1 Hz), even without data compression from readout boards
 - Data compression will be necessary in consideration of final network bandwidth and data storage

TPC Vertical Slice Test

Example Waveform (RMS ~3.1 ADC counts)

C. Farnese, DocDB 12393

time samples (400 ns)

Y.T. Tsai, ICARUS Technical Meeting

PMT DAQ

- PMT DAQ development has continued in collaboration with SBND using test-stand at DZero Assembly Building
- Recently, PMT "Vertical Slice Test" also established at ICARUS building, with first data-taking and readout in the past months
- DAQ software proven to operate at near maximum bandwidth of the CONET-2 links (80 MB/s), with detailed time synchronization tests from SBND
 - This includes simulation of the beam spill structures in readout configurations
- There are many available configurations for event-building and readout triggering conditions

PMT Vertical Slice Test

from A. Chatterjee

CRT DAQ

- With respect to the DAQ, the CRT has two types of readout electronics to consider:
 - Bottom panel use the "Double Chooz" electronics, also used by the ProtoDUNE Single Phase detector (R. Howell)
 - Side and top panels use the CAEN electronics originally developed by Bern, and are in common with SBND (A. Aduszkiewicz, C. Hilgenberg, T. Boone, U. Kose, …)
- Readout strategy has been defined for both systems to collect a continuous stream of data and respond to requests for data within a window around a trigger time
 - Readout mode fully supported by *artdaq* framework
 - Development of *BoardReader* software over the summer to start simplifying the readout code continues
- Have held multiple tutorial sessions to build more involvement

CRT DAQ Teststands

 Have many operating teststands to support needs for testing and development

University of Houston

Wideband @ FNAL

Configuration and Control

- We are utilizing tools common to *artdaq* and SBN for configuration and control of the DAQ
- Configurations are managed through *FHiCL* files, and stored in an online unstructured database
 - Dedicated scripts will need to be written to transfer to offline databases
- Run control interface developed with SBND collaborators to provide a shifter-level Graphical User Interface

Run Control Interface Screenshots

Control starting processes...

DAQ ready to begin run

I. Icaza Astiz and E. Cristaldo (SBND), DocDB 12822

😤 Fermilab

11 12 Sep 19 ICARUS Collaboration Meeting, 11-13 Sep 2019

Online Databases

- Scope of needs for online databases and interactions between them defined (effort led by B. Biswaranjan)
- Recent work mostly on hardware/mapping databases:
 - TPC hardware database tables are finalized and almost ready to fill the information.
 - Top CRT schemas migrate to postgresql database in next weeks
 - Side and bottom CRT tables are being finalized

🌫 Fermilab

• Please check your inbox and send your comments and suggestions!

Interface to Trigger and Timing

- We will communicate with the Trigger electronics through UDP packets from a dedicated process (an *artdaq BoardReader*) in the DAQ system
 - This will allow the trigger system to be part of the larger state machine of the DAQ
 - The trigger software processes will be managed/controlled by the RunControl
 - There is sufficient flexibility to allow for modifying the necessary sequence of commands to be sent during configuration
 - This will allow data to be collected and associated with the detector data and monitoring streams
- There are existing UDP packet receivers in *artdaq* that we can modify to achieve this
- The interactions with the WhiteRabbit timing system will proceed in a similar fashion

Trigger Inhibits

- While we expect the updates to the electronics to allow for improved performance, we still would like a handshake process with the TPC readout buffers and Trigger to avoid triggering when we cannot take data
- An InhibitMaster process, utilized in protoDUNE SP, is being adapted for use in ICARUS and SBND
 An InhibitMaster St No Inhibit
 Frontend states
 TestFrontEnd:
 - Status of inhibiting ready to be included in monitoring pages

Online monitoring

- We have made a lot of progress on filling out the online monitoring over the summer months
 - Much thanks to work from out summer interns (O. Bitter, F. Pucci), M. Betancourt, and G. Putnam from SBND
- Data is streamed to a process which can run both low and high level analysis in *LArSoft*, and then display results on webpage, via online in-memory database
 - J. Mueller working on process to archive values from that database to offline
 - K. Mistry (SBND)
 - Other common developments with SBND
- We have been using this system with the vertical slice tests to help provide immediate feedback on electronics testing

Online Monitoring: TPC

- TPC waveforms for each channel can be displayed
 - Pedestal and RMS values can update every few seconds
 - Can zoom in on parts of waveform, perform pedestal subtraction, and choose different channels to view
 - Purity information can be extracted from analysis of TPC tracks
 - Preliminary version being tested on simulated data
 - Expect an updated measurement every 5 minutes

Online Monitoring in the TPC Vertical Slice Test

ICARUS Monitoring TPC ICARUS EPICS Side CRT Waveform

Fermilab

17 12 Sep 19 ICARUS Collaboration Meeting, 11-13 Sep 2019

Online Monitoring: PMT Waveforms

- Many of the same tools immediately useful for the PMT monitoring
 - A. Chatterjee and C. Garces working to incorporate that more completely now: first tests below!

			PMT channel 0 P	Pedestal					(
Stream	30s	•	11:30	11:45	12 PM	12:15	12:30	12:45	01 PM
Height	25	T							
								o e .+ 1	
8175									
8175	Li t				n n midd r				
8175 8170 0 0									
8175 8170 900 Count 8165									
8175 8170 90C Connt 8165									

Online data file management

- Online data management will make use of standard FNAL SCD software toolkit
 - File Transfer Service (FTS) will automatically move files to off-detector computing, triggered by presence of file and metadata
- Inheriting from previous work on LArIAT and SBND, have a set of scripts to define file metadata and mark files ready for transfer
 - From there, FTS will move files automatically
 - FTS experts available to consult and help fix any issues
 - Typically: restarting a deamon

🚰 Fermilab

Final data storage

- Use Similar common tools for sending data to tape
 - Further consulting with SCD experts on tools for data replication (e.g. RUCIO)
- Working with experts at CAF to send data and processing jobs to Italy
 - Building from experience with CDF data and computing

Activities over the next weeks

- We are continuing work on developing the DAQ software at teststands
- We are anxiously awaiting the installation of the DAQ servers and networking to begin large-scale readout of the detector
 - Very happy to see the recent progress on power
 - Our goal is to have an integrated TPC+PMT readout at the ICARUS detector in coming weeks
- Need to work to develop the final plans for event-building and commissioning of the full DAQ and online systems

Anticipating commissioning and first data

- The online DAQ data management systems are being designed to satisfy these needs for early commissioning
 - Currently anticipate a commissioning period of ~3 months, with successive reduction in average trigger rate as the trigger system is commissioned
 - ~5 Hz 'open trigger' (only on beam gates/random triggers) for one month
 - ~3 Hz for one month
 - ~2 Hz for final month
 - Leading to 1 Hz final target data-taking rate
 - This will generate ~1.8 PB of raw data, which will be a challenge to fully process (1.7 M CPU Hours)
 - We should not take more data than we reasonably intend to process
- *artdaq* and DAQ software are designed implement high-level software trigger/filters that utilize offline algorithms, and filter data into appropriate streams
 - We will work with offline analysis teams to plan specific uses of these features

🚰 Fermilab

Backup slides

23 12 Sep 19 ICARUS Collaboration Meeting, 11-13 Sep 2019

Online Monitoring of TPC purity

- Incorporating online analysis of argon purity into the monitoring system
 - Expect updated data point every 5 minutes
 - Preliminary test with simulation data

🛠 Fermilab

Purity as a function of time for each TPC