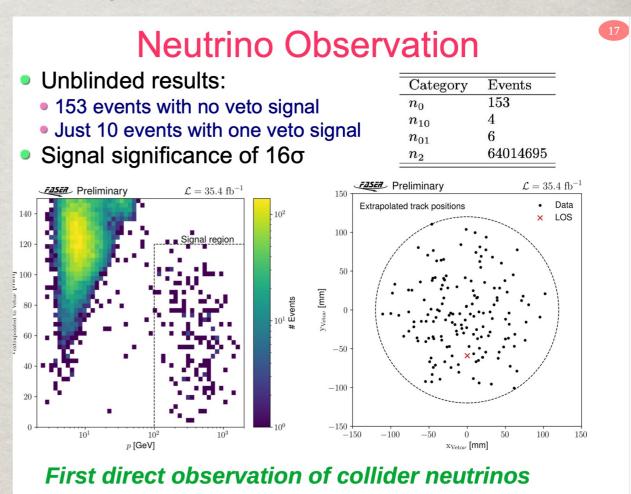
"NEUTRINOS @ THE LHC"

Tao Han University of Pittsburgh

ACP 2023 Winter Program March 27, 2023

NEUTRINOS @ COLLIDERS (?)

They Are All Gone!


-- as "missing energies"

Time has changed: They are "seen"!

First Physics Results from the FASER Experiment

Brian Petersen on behalf of the FASER Collaboration 19 March 2023 57th Recontres de Moriond

More, see Jonathan Feng's talk this evening

TESTING NEUTRINO MASS MODELS @ COLLIDERS

Contents:

- Representative neutrino mass models
 & their phenomenological features
- Collider tests & complementarity

Most straightforward on m_{ν} : add N_R 's – like all the other SM fermions

$$L_{aL} = \begin{pmatrix} \nu_{a} \\ l_{a} \end{pmatrix}_{L}, \quad a = 1, 2, 3; \quad N_{bR}, \quad b = 1, 2, 3, ... n \ge 2.$$

$$-\mathcal{L}_{Y} = \sum_{a=1}^{3} \sum_{b=1}^{n} f_{ab}^{\nu} \overline{L_{aL}} \widehat{H} N_{bR} + h.c.$$

$$\Rightarrow \sum_{a=1}^{3} \sum_{b=1}^{n} \overline{\nu_{aL}} m_{ab}^{\nu} N_{bR} + h.c.$$

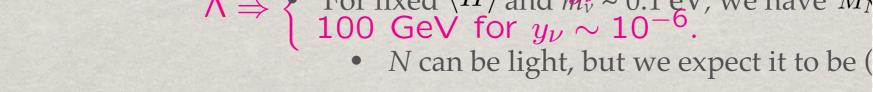
- Dirac mass terms: Yukawa couplings arbitrary & tiny: $y_{\nu} < 10^{-11}$
- N_R a gauge singlet: "sterile neutrino"
 Why not a Majorana mass term?

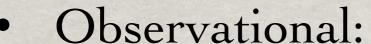
$$\sum_{b,b'=1}^{n\geq 2} \overline{N^c_{bL}} \ M_{bb'} \ N_{b'R} + h.c.$$

SM as a low-energy effective field theory:

The leading SM gauge invariant operator is at dim-5:*

$$\frac{1}{\Lambda} (y_{\nu}LH)(y_{\nu}LH) + h.c. \quad \Rightarrow \quad \frac{y_{\nu}^2 v^2}{\Lambda} \, \overline{\nu_L} \, v_R^c.$$

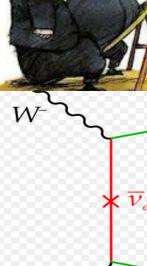

*S. Weinberg, Phys. Rev. Lett. 1566 (1979)


Implications:

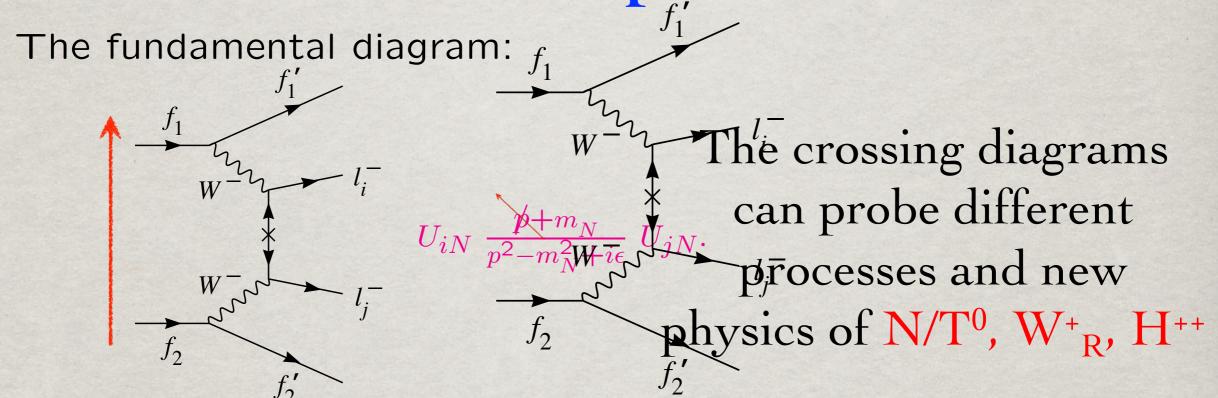
• Theoretical: 1 = y\bar{L}HN \(\frac{d}{a} \bar{L} \bar{N} \) particles, implies an underlying (LIV) theory! The See saw spinit:

If $m_{\nu} \sim 1$ eV, then $\Lambda \sim y_{\nu}^2$ (10¹⁴ GeV).

 $\Lambda \Rightarrow \begin{cases} \frac{10^{14}}{\text{For fixed P}} & \text{for } M_{\nu} \sim 0.1 \text{ eV, we have } M_{L} \\ 100 & \text{GeV for } y_{\nu} \sim 10^{-6}. \end{cases}$



△L=2 → Majorana mass (Majorana neutrinos)


 \rightarrow Opens the door to BSM ν physics at low & high energies!

†Yanagita (1979); Gell-Mann, Ramond, Slansky (1979), S.L. Glashow (1980); Mohapatra, Senjanovic (1980) ...

Observational Aspects:

the most-wanted process: $\Delta L=2$

The transition rates are proportional to

$$\left|\mathcal{M}\right|^2 \propto \left\{ \begin{array}{l} \langle m \rangle_{\ell_1 \ell_2}^2 = \left| \sum_{i=1}^3 U_{\ell_1 i} U_{\ell_2 i} m_i \right|^2 & \text{for light } \nu; \\ \frac{\left| \sum_{i=1}^n V_{\ell_1 i} V_{\ell_2 i} \right|^2}{m_N^2} & \text{for heavy } N; \\ \frac{\Gamma(N \to i) \ \Gamma(N \to f)}{m_N \Gamma_N} & \text{for resonant N production.} \end{array} \right.$$

UV-complete theoretical Models:

The Weinberg operator non-renormalizable

Need Ultra-Violet completion at/above 1.

Group representations based on SM SU_L(2) doublets:

$$2 \otimes 2 = 1(\text{singlet}) + 3(\text{triplet})$$

- → There are three possibilities:
- Type I: Fermion singlets $\otimes (L H)_S$
- Type II: Scalar triplet $\otimes (L L)_T$
- Type III: Fermion triplets $\otimes (L H)_T$

E. Ma: PRL 81, 1771 (1998).For recent reviews: Z.Z. Xing: arXiv:1406.7739;Y. Cai, TH, T. Li & R. Ruiz: arXiv:1711.02180.

Type I Seesaw: Singlet N_R's – Sterile neutrinos

$$L_{aL} = \begin{pmatrix} \nu_a \\ l_a \end{pmatrix}_L$$
, $a = 1, 2, 3$; N_{bR} , $b = 1, 2, 3, ... n \ge 2$.

Dirac plus Majorana mass terms: $(\overline{\nu_L} \ \overline{N^c_L}) \begin{pmatrix} 0_{3\times3} & D_{3\times n}^{\nu} \\ D_{n\times3}^{\nu T} & M_{n\times n} \end{pmatrix} \begin{pmatrix} \nu^c_R \\ N_R \end{pmatrix}$

Majorana neutrinos:

$$\nu_{aL} = \sum_{m=1}^{3} U_{am} \nu_{mL} + \sum_{m'=4}^{3+n} V_{am'} N_{m'L}^{c},$$

$$N_{aL}^{c} = \sum_{m=1}^{3} X_{am} \nu_{mL} + \sum_{m'=4}^{3+n} Y_{am'} N_{m'L}^{c},$$

$$m=1$$

The charged currents:

$$-\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} W_{\mu}^{+} \sum_{\ell=e}^{\tau} \sum_{m=1}^{3} U_{\ell m}^{*} \overline{\nu_{m}} \gamma^{\mu} P_{L} \ell + h.c.$$

$$+ \frac{g}{\sqrt{2}} W_{\mu}^{+} \sum_{\ell=e}^{\tau} \sum_{m'=4}^{3+n} V_{\ell m'}^{*} \overline{N_{m'}^{c}} \gamma^{\mu} P_{L} \ell + h.c.$$

Type I Seesaw features:

Existence of N_R (possibly low mass*)

$$U_{\ell m}^2 \sim V_{PMNS}^2 \approx \mathcal{O}(1); \ V_{\ell m}^2 \approx m_{\nu}/m_N.$$

 $U_{\ell m}$, Δm_{ν} are from oscillation experiments m_N a free parameter: could be accessible!

But difficult to see N_R:

The mixing is typically small, mass wide open:

$$V_{\ell m}^2 \approx (m_{\nu}/eV)/(m_N/GeV) \times 10^{-9}$$
$$< 6 \times 10^{-3} (low\ energy\ bound)$$

(Fine-tune or hybrid could make it sizeable.)

* Casas and Ibarra (2001);

A. Y. Smirnov and R. Zukanovich Funchal (2006);

A. de Gouvea, J. Jenkins and N. Vasudevan (2007);

W. Chao, Z. G. Si, Z. Z. Xing and S. Zhou (2008).

Type II Seesaw: No need for N_R, with Φ-triplet*

With a scalar triplet Φ (Y=2): $\phi^{\pm\pm}, \phi^{\pm}, \phi^0$ (many representative models). Add a gauge invariant/renormalizable term:

$$Y_{ij}L_i^TC(i\sigma_2)\Phi L_j + h.c.$$

That leads to the Majorana mass:

$$M_{ij}\nu_i^T C\nu_j + h.c.$$

where

$$M_{ij} = Y_{ij} \langle \Phi \rangle = Y_{ij} v' \lesssim 1 \text{ eV},$$

Very same gauge invariant/renormalizable term:

$$\mu H^{T}(i\sigma_{2})\Phi^{\dagger}H + h.c.$$

$$v' = \mu \frac{v^{2}}{M_{\phi}^{2}},$$

leading to the Type II Seesaw. †

^{*}Magg, Wetterich (1980); Lazarides, Shafi (1981); Mohapatra, Senjanovic (1981). ...

†In Little Higgs model: T.Han, H.Logan, B.Mukhopadhyaya, R.Srikanth (2005).

Type II Seesaw features*

• Triplet vev → Majorana mass → neutrino mixing pattern! $H^{\pm\pm} \rightarrow \ell_i^{\pm}\ell_i^{\pm} \rightarrow \text{neutrino mixing pattern!}$ $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$. 150/Competing channel

Naturally embedded in L-R symmetric model:#

$$W_R^{\pm} \rightarrow N_R e^{\pm}$$
 $M_{H^{++}}$ (GeV)

(* Large Type I signals via W_R-N_R)

[†]Pavel Fileviez Perez, Tao Han, Gui-Yu Huang, Tong Li, Kai Wang, arXiv:0803.3450 [hep-ph]

[#] Mohapatra, Senjanovic (1981). ...

Type III Seesaw: with a fermionic triplet*

With a lepton triplet T (Y = 0): T^+ T^0 T^- , add the terms: $-M_T(T^+T^- + T^0T^0/2) + y_T^i H^T i \sigma_2 T L_i + h.c.$

These lead to the Majorana mass:

$$M_{ij} pprox y_i y_j rac{v^2}{2M_T}$$
.

Again, the seesaw spirit: $m_v \sim v^2/M_T$.

Features:

Demand that $M_T \lesssim 1$ TeV, $M_{ij} \lesssim 1$ eV, Thus the Yukawa couplings:

$$y_j \lesssim 10^{-6}$$
,

making the mixing $T^{\pm,0} - \ell^{\pm}$ very weak.

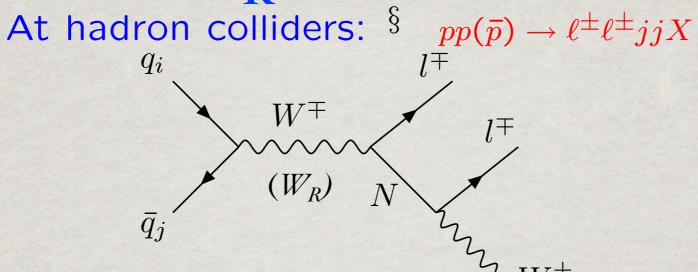
 T^0 a Majorana neutrino;

Decay via mixing (Yukawa couplings);

 $T\overline{T}$ Pair production via EW gauge interactions.

^{*}Foot, Lew, He, Joshi (1989); G. Senjanovic et al. ...

OTHER MODELS & PHENOMENOLOGY


Thus far, we considered tree-level Type I, II, III seesaw models

Many models to account for the neutrino mass.*
Another class of well-motivated models:
Radiative (loop) generation of neutrino masses.

- Zee (1986)-Babu (1988) Model:
 add singlet scalar fields m_v generate at 2-loop
 → change Higgs physics
- Ma Models (2006):
 add singlet scalars + Z₂ symmetry
 → Dark matter
- Other rich phenomenology:
 - Neutrino portal to the dark sector (Brian Batell)
 - Non-Standard v-interactions (NSIs)

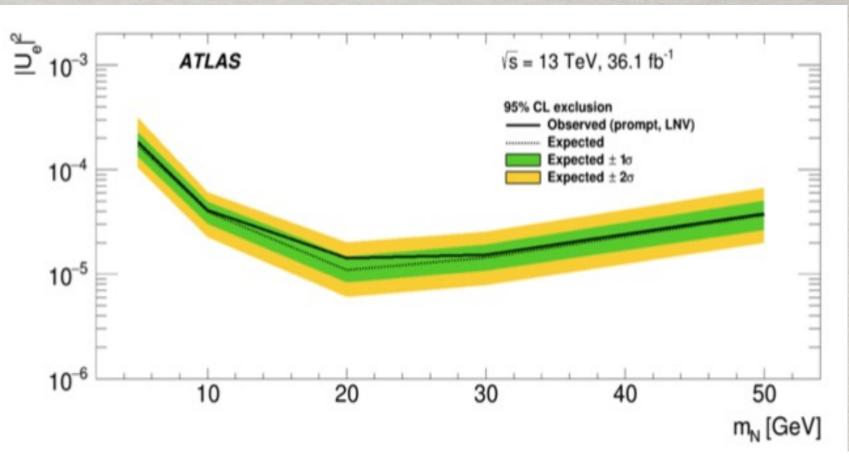
^{*} For a review, see, M.C. Chen & J.R. Huang, arXiv:1105.3188v2.

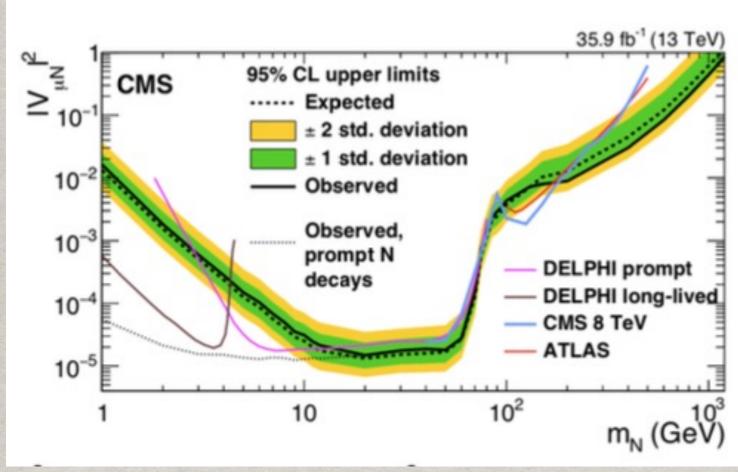
1. N_R at Colliders

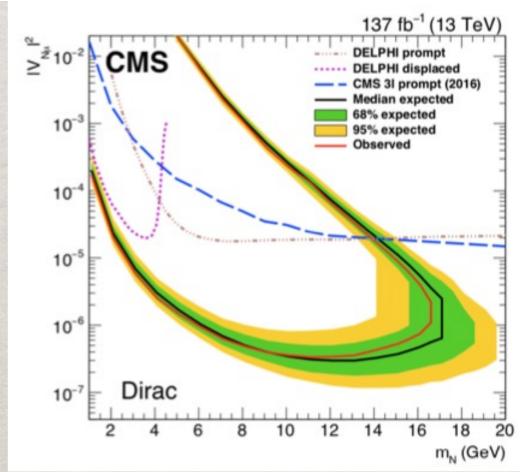
 $\sigma(pp\to\mu^\pm\mu^\pm W^\mp)\approx\sigma(pp\to\mu^\pm N)Br(N\to\mu^\pm W^\mp)\equiv\frac{V_{\mu N}^2}{\sum_l\left|V^{\ell N}\right|^2}\ V_{\mu N}^2\ \sigma_0.$ Factorize out the mixing couplings: †

$$\sigma(pp o \mu^{\pm}\mu^{\pm}W^{\mp}) \equiv S_{\mu\mu} \sigma_0,$$
 $S_{\mu\mu} = \frac{V_{\mu N}^4}{\sum_l |V_{\ell N}|^2} pprox \frac{V_{\mu N}^2}{1 + V_{\tau N}^2/V_{\mu N}^2}.$
 $S_{\mu\nu} = \frac{V_{\mu N}^4}{\sum_l |V_{\ell N}|^2} \approx \frac{V_{\mu N}^2}{1 + V_{\tau N}^2/V_{\mu N}^2}.$

A very clean channel:

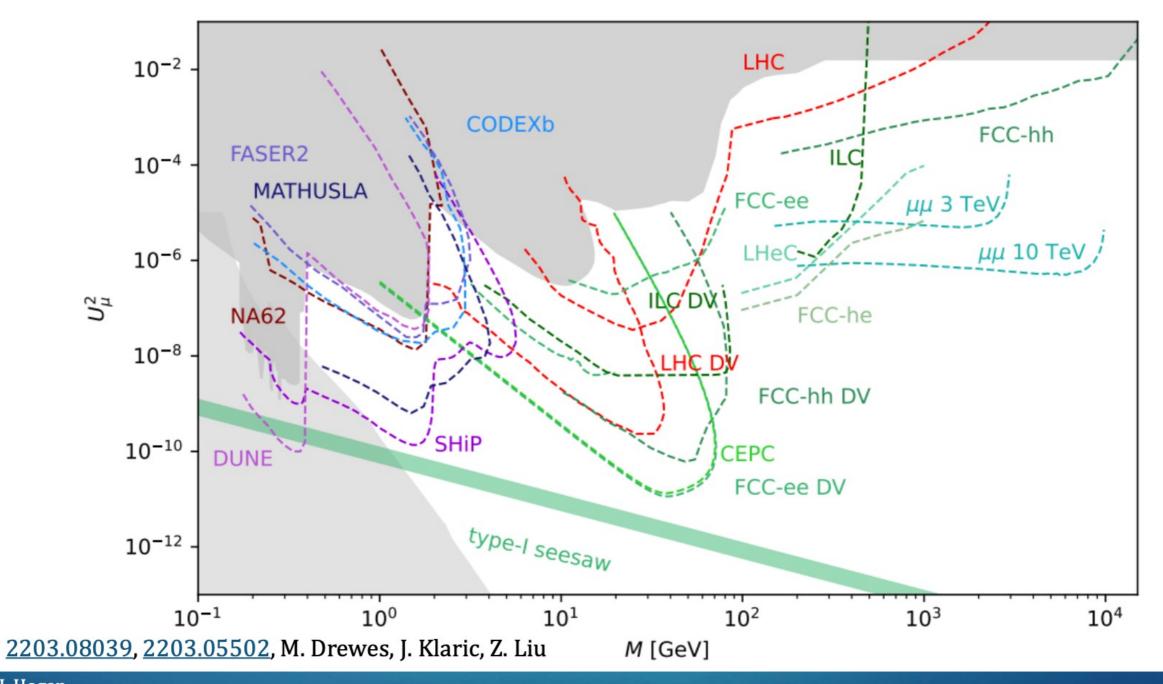

- like-sign di-muons plus two jets;
- no missing energies;
- $m(jj) = M_W, \ m(jj\mu) = m_N.$


 $\widehat{\mathbb{Q}}$ 10^{4} 10^{2} 10^{0} 10^{0} 10^{0} 10^{0} 10^{0} 10^{0} 10^{0} 10^{0} 10^{0} 10^{0} 10^{0} 10^{0} 10^{0} 10^{0}


§Keung, Senjanovic (1983); Dicus et al. (1991); A. Datta, M. Guchait, A. Pilaftsis (1993); ATLAS TDR (1999); F. Almeida et al. (2000); F. del Aguila et al. (2007).

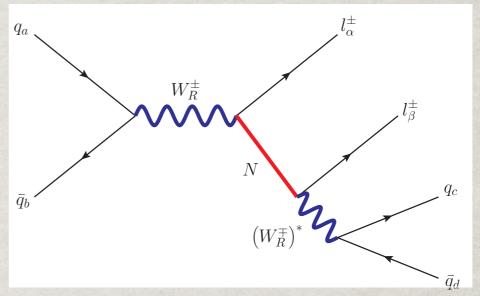
[†]T. Han and B. Zhang, hep-ph/0604064, PRL (2006).

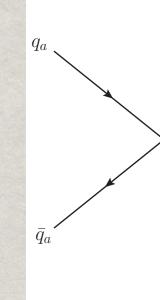
Active search @ LHC

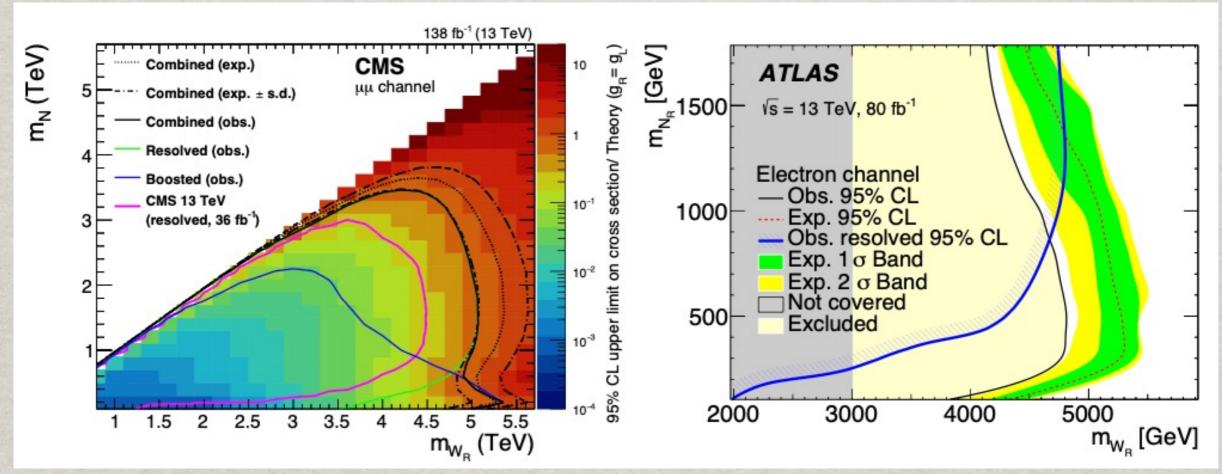


Heavy N Whitepaper: arXiv:2203.08039

Complementarity @ high & low masses

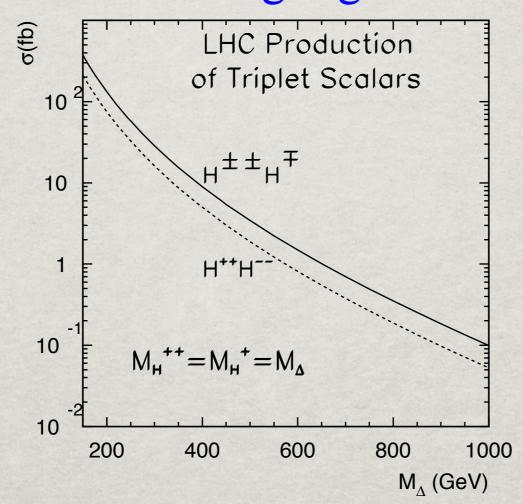

- For displaced HNL signatures, more experiments can join the search
- ► HL-LHC timescale: FASER2, MATHUSLA, CODEXb, DUNE can probe low masses




2. N_R & W_R @ Hadron Colliders

In Left-Right symmetric model:

- No mixing suppression
- New unknown mass scale M_R

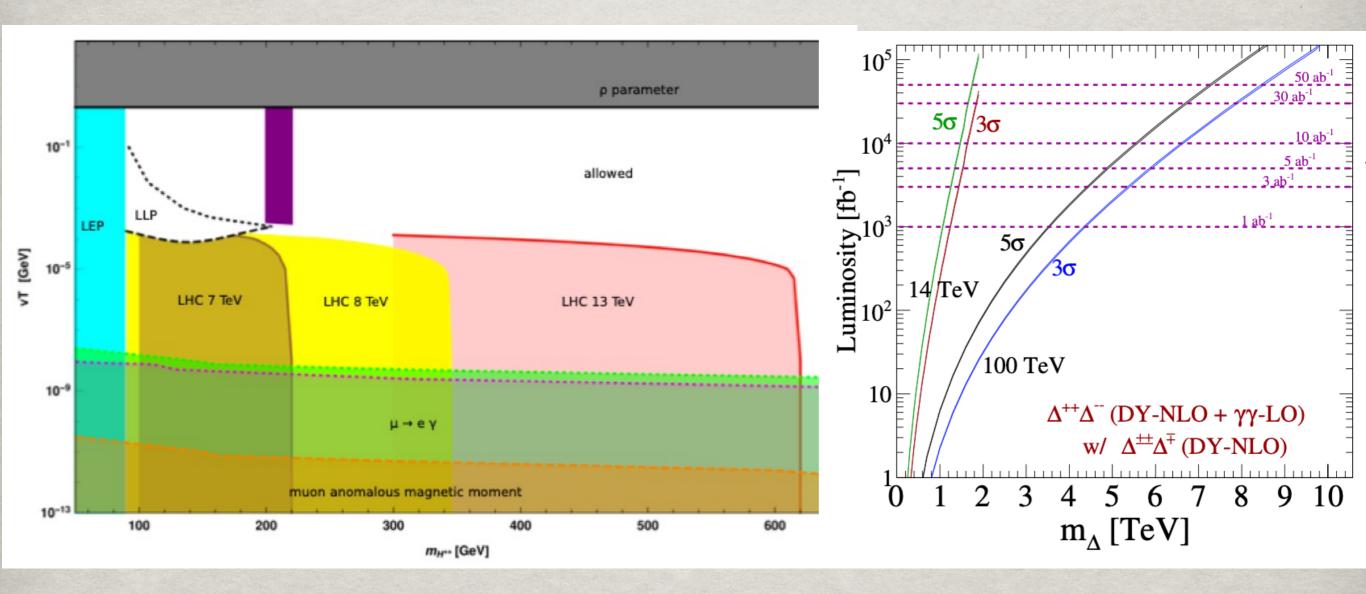


W. Keung & G. Senjanovic, PRL 50 (1983) 1427 Heavy N Whitepaper: arXiv:2203.08039

3. Type II Seesaw: H^{±±} & H[±]

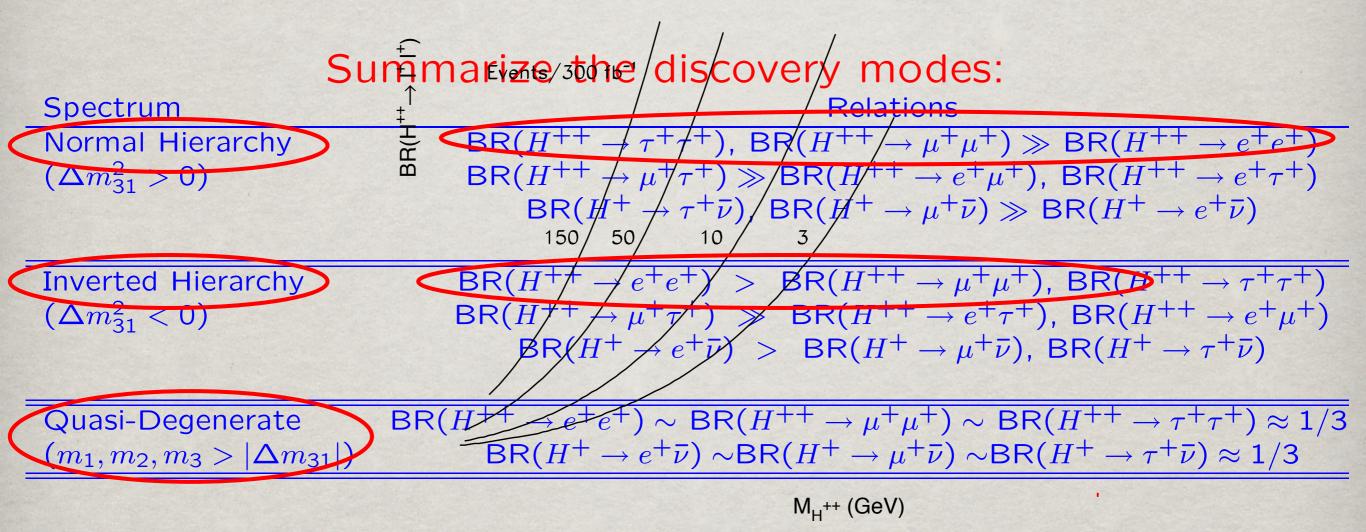
 $H^{++}H^{--}$ production at hadron colliders: †
Pure electroweak gauge interactions

Akeroyd, Aoki, Sugiyama, 2005, 2007.


$$\gamma\gamma \to H^{++}H^{--}$$
 10% of the DY.

†Revisit, T.Han, B.Mukhopadhyaya, Z.Si, K.Wang, arXiv:0706.0441.

Z.L. Han, R. Ding, Y. Liao, arXiv:1502.05242; 1506.08996;

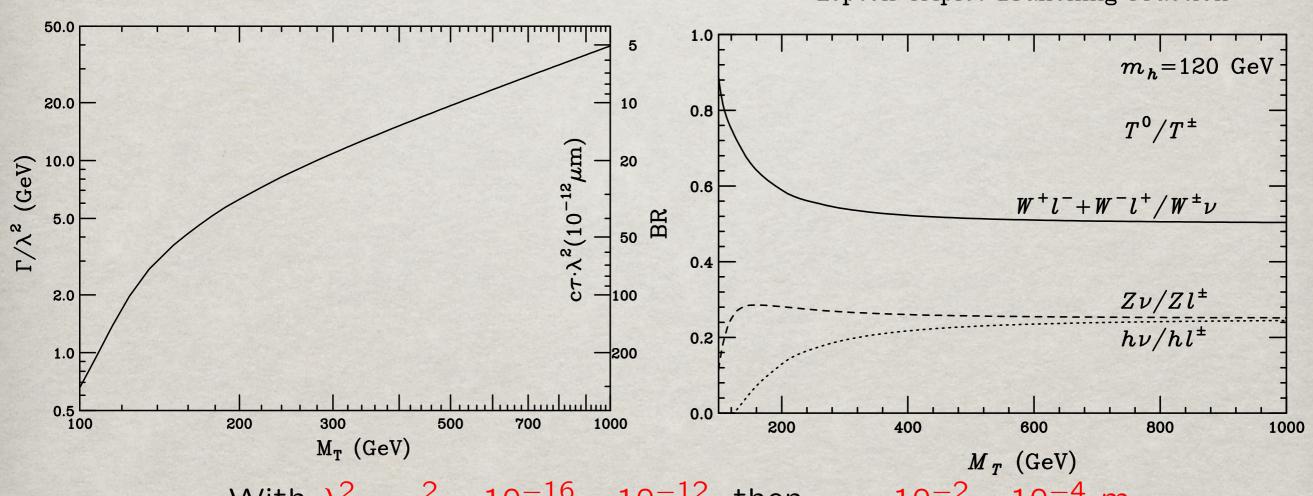

J. Gehrlein, D. Goncalves, P. Machado, Y. Perez-Gonzalez: arXiv:1804.09184.

Type II: H^{±±} & H[±]

BSM Whitepaper: arXiv:2203.08039

Neutrino – charged lepton correlations

†Pavel Fileviez Perez, Tao Han, Gui-Yu Huang, Tong Li, Kai Wang, arXiv:0803.3450 [hep-ph]


4. Type III Seesaw: T[±] & T⁰

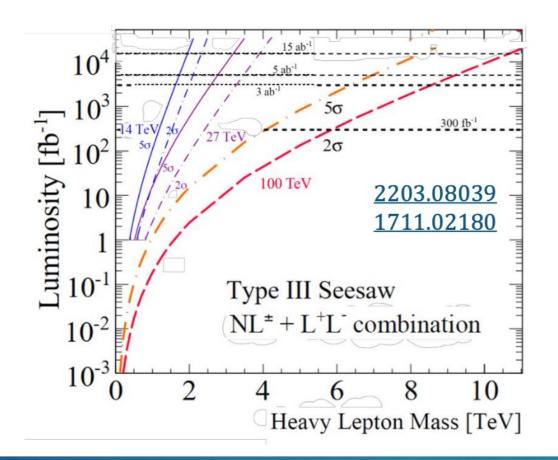
Consider their decay length:

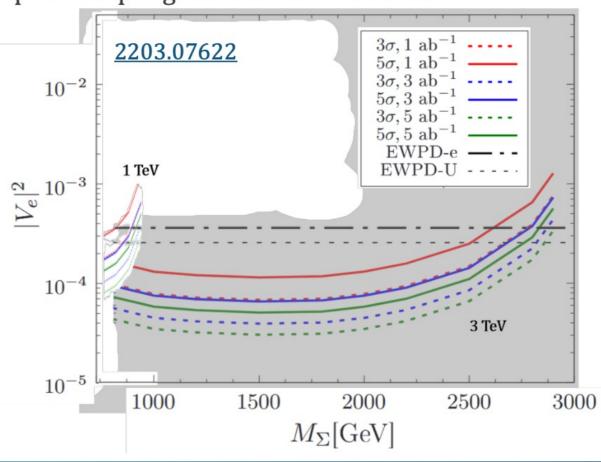
$$\Gamma(T^{+} \to W^{+} \nu) \approx 2\Gamma(T^{+} \to Z\ell^{+}) \approx 2\Gamma(T^{+} \to h\ell^{+})$$

 $\approx \Gamma(T^{0} \to W^{+}\ell^{-} + W^{-}\ell^{+}) \approx \frac{M_{T}}{16\pi} \sum_{i} |y_{i}|^{2}.$

Width and Decay Length

Lepton Triplet Branching Fraction



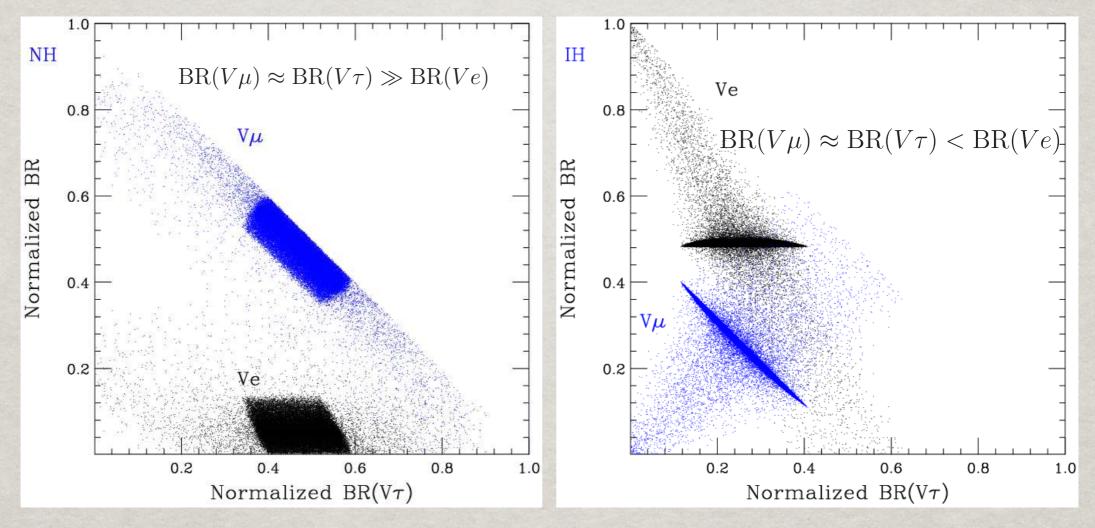

With $\lambda^2 = y_i^2 \sim 10^{-16} - 10^{-12}$, then $c\tau \sim 10^{-2} - 10^{-4}$ m

Still not too long-lived, but possibly large displaced vertices.

Tong Li & X.G. He, hep-ph/0907.4193.

- ► N \rightarrow W ℓ gives multilepton or boosted-jet final states
- **pp**: pair production of neutral + charged heavy leptons
 - ► HL-LHC will not reach far beyond ~1 TeV Run 2 bounds
 - ▶ 100 TeV could quickly out to 6 TeV, discover past 3 TeV
- **ee**: single production of neutral lepton
 - Below their thresholds, ee colliders can push couplings below EWPD bounds.

2202.08676


W*+

J. Hogan

Type III Seesaw: T[±] & T⁰

Lepton flavor combination determines the ν mass pattern: †

$$m_{\nu}^{ij} \sim -v^2 \frac{y_T^i y_T^j}{M_T}, \quad BR(T^{\pm,0} \to W^{\pm}\ell, \ Z\ell) \sim y_T^2 \sim V_{PMNS}^2 \frac{M_T m_{\nu}}{v^2}.$$

Lepton flavors correlate with the ν mass pattern.

[†]Abdesslam Arhrib, Borut Bajc, Dilip Kumar Ghosh, Tao Han, Gui-Yu Huang, Ivica Puljak, Goran Sejanovic, arXiv:0904.2390.

Summary

- Seesaw mechanism well motivated: $m_{\nu} \sim y^2 v^2/M$
- Collider experiments complement the oscillations experiments to explore ν physics.
- Collider experiments reach higher mass threshold and thus probe the dynamical origin.
- o Type I-like: $N_R \sim 1$ TeV, $U_v \sim 10^{-6}$
- o Type II: $H^{++} \sim 1 \text{ TeV}$
- o Type III: T^+ , $T^0 \sim 1 \text{ TeV}$
- O Radiative mass models: scalar mass a few 100 GeV.
- O Test ν-portal to DM; NSIs.

Collider experiments may discover the neutrino mass generation mechanism (with luck)!