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Axion Dark Matter

▪ Dark matter is a mysterious particle that 
makes up 24% of the mass in the Universe

▪ Axions are a theoretical particle that solves the 
Strong CP problem

▪ Properties of the axion make it a viable dark 
matter candidate

PC: NASA, Van Albala et al., NASA WAMP

PC: Andreas Knecht
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Axion Landscape

Adapted from Ciaran O’Hare

Cosmological constraints 
imply axion dark matter mass:
𝑚𝑎 = 1𝑝𝑒𝑉 − 1𝑒𝑉
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Axion Dark Matter Searches

Adapted from Ciaran O’Hare

Cavity

Lumped elements 
(DM Radio)

Orpheus
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Microwave Cavity Axion Haloscopes

▪ Axion haloscopes probe for axion dark 
matter in the local Milky Way halo

— Axion dark matter couples off static 
magnetic field to produce microwave 
photons

— Conversion is enhanced when resonant 
cavity is tuned to the same frequency as the 
photon

▪ Signal is picked up by antenna, 
amplified by a low-noise receiver, then 
sampled
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Scan Rate for Cavity Axion Haloscopes
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Theoretical Parameters
• 𝑔𝛾 − Dimensionless Coupling constant

• 𝑓 − Axion frequency
• 𝜌0 − Dark matter halo energy density

Experimental Parameters
• 𝑆𝑁𝑅 − Signal-to-noise ratio
• 𝐵0 − External magnetic field
• 𝑉 − Cavity volume
• 𝑄𝐿 − Cavity quality factor
• 𝐶𝑙𝑚𝑛 − Cavity form factor
• 𝑇𝑠𝑦𝑠 − System noise temperature
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Axion Dark Matter Experiment (ADMX)

▪ Largest axion haloscope in the world

▪ Sited at the University of Washington

▪ ~50 collaborators
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Tuning the Resonant Cavity

▪ Cavity resonant frequency is set by tuning rods 
inside the cavity

— Tuning rods can be rotate from center of the cavity to 
the walls of the cavity

Cavity mode is tracked after each 
tuning step using a transmission 
measurement through the cavity
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Sampling the Signal from the Cavity

▪ Dipole antenna couples signal from cavity 
into a low-noise microwave receiver
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Sampling the Signal from the Cavity: Field Free Region

▪ Signal from cavity is coupled into an 
ultra-low noise receiver via a dipole 
antenna in the cavity

▪ Field sensitive components are kept 
in a field free region generated by a 
bucking coil magnet
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Sampling the Signal from the Cavity

▪ Signal from cavity is coupled into an 
ultra-low noise receiver via a dipole 
antenna in the cavity

▪ Field sensitive components are kept 
in a field free region generated by a 
bucking coil magnet

— System noise is optimized with 
low noise first-stage amplifier

• Josephson Parametric Amplifier (JPA)

– SQUID based technology

JPA Package
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Synthetic Axion Injections

▪ Synthetically generated axion 
waveforms are injected into the cavity 
via a weakly coupled antenna

▪ Enables testing of RF receiver and 
candidate identification 
methodology

— Blinded axion injections
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Data Taking Run with ADMX

▪ Data run from June 2021-Dec 2022

— Rescan previously explored range to DFSZ

— Tuning Range: 800-950 MHz

▪ Data taking operations are controlled by 
an automated script
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Identifying Axion Signals in Analysis

▪ Data run collects ~10,000 digitized 
power spectra

— Analysis must search through these for axion
signals

▪ Individual spectra are processed for 
background removal

— Power in each frequency bin is weighted
relative to distance from cavity resonant 
frequency

▪ Combine individual spectra into a 
“grand spectrum” to enhance the signal-
to-noise ratio of potential axion signals



15
LLNL-PRES-846832-DRAFT

Vetoing Candidate Signals

▪ Candidates are always expected due to 
blind injections, noise fluctuations, RFI

▪ Candidates that are identified as 
potential axion signals undergo a 
rigorous series of tests
1. Is the signal persistent?

2. Is the signal enhanced by the cavity 
resonance?

3. Does the signal lineshape follow a 
Maxwell-Boltzmann distribution?

4. Does the power of the signal scale 
correctly?

• Change the magnetic field magnitude and 
search mode
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Results: Limits on Axion-to-Photon Coupling

Preliminary

• Problems with tuning systems  
prevented coverage of full 
frequency range
• Covered 943-950 MHz
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▪ The target mass of your axion search sets the length scale of your resonant cavity

▪ As resonant frequency of the cavity goes up
— Volume decreases as 𝑉~1/𝑓3

— Quality factor decreases as 𝑄~1/𝑓2/3

— Noise power increases at 𝑇𝑎𝑚𝑝~𝑓

▪ To maintain an adequate scan rate need new developments (Multiple cavities, 
Stronger magnets, Higher Q cavities, etc.)

Probing for Higher Mass Axions
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Larger cavities to 
maintain volume

Lower loss 
materials to 
improve Q factor

Stronger 
magnets 

Below SQL noise (?)
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ADMX Sidecar

▪ Higher frequency cavity 
mounted above the main cavity 

— Testbed for higher frequency 
resonator designs

▪ Research into

— Piezo-electric based tuning 
systems

• Fine control over tuning

— Josephson Traveling Wave 
Parametric Amplifiers (JTWPA)

• Broadband low noise amplification

20 cm
2)mm

2037)junc@ons
679)resonators
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Pursing Higher Mass Axion: Run 1D

Run 1D: 
1.0-1.4 

GHz

Single “Large” Rod
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Preparations for Run 1D

Run 1D will begin 
Summer 2023!
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ADMX 4-Cavity Array

Run 
2A: 

1.4-2.0 
GHz

Run 
1D: 

1.0-1.4 
GHz

4-Cavity System
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ADMX-Extended Frequency Range (EFR) 

Run 
2A: 

1.4-2.0 
GHz

Run 
1D: 

1.0-1.4 
GHz

EFR: 
2.0-4.0 

GHz

18-Cavity Array
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ADMX-EFR Cryostat Design 

Fridge 1: RF 
Receiver

Fridge 2: 18 
Cavity-Array

Photon Transport 
System

9.4T MRI Magnet

18 JPA Receiver
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Summary

▪ Axion dark matter is exciting field!

▪ ADMX has excluded axion dark matter between 𝑚𝑎 = 3.9 − 3.93 𝜇𝑒𝑉

▪ We are currently preparing for a new run searching for axions between 𝑚𝑎 = 4.2 − 5.8 𝜇𝑒𝑉
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Questions
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Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United 
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or 
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Backup slides
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Calibrating the Signal Power

▪ Output signal is switched to a calibrated 
noise source

— Noise power is measured vs noise source 
temperature
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▪ Measure improvement in signal-to-noise of receiver with JPA on and off

▪ 𝑆𝑁𝑅𝐼 =
𝐺𝑜𝑛

𝐺𝑜𝑓𝑓
/

𝑃𝑜𝑛

𝑃𝑜𝑓𝑓
; 𝑇𝑠𝑦𝑠=

𝑇𝐻𝐹𝐸𝑇

𝑆𝑁𝑅𝐼

▪ Does not heat experiment, so can be done frequently

𝐺𝑜𝑛
𝐺𝑜𝑓𝑓

= 22 𝑑𝐵
𝑃𝑜𝑛
𝑃𝑜𝑓𝑓

= 7 𝑑𝐵
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• Noise temperature of JPA is dependent on bias parameters of JPA

• JPA SNRI is optimized by adjusting the power of the JPA-pump tone and the JPA-bias 
current

SNRI: Optimizing the System Noise Temperature



32
LLNL-PRES-846832-DRAFT

Critically Coupled: Modemap

Critically Coupled 
Antenna

Total Antenna Steps: 
715,000 (1-2”)
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1D: Quality Factor

Change 
windowing to 
zoom in

Missing Data from Mode 

Crossings (to be refilled)
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Critically Coupled: Quality Factor

Change 
windowing to 
zoom in
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Warm Cavity Assembly

▪ Two cavities received from UF 
assembled warm

— Slight difference in empty cavity Q’s, surface 
finish?
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Warm Modemap
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Cryogenic Mounting of EFR 

▪ Two-cavity system was mounted into LLNL 
DF unit
— Cavities mounted in horizontal orientation with 

rotary piezo for tuning each cavity

• Swapped sapphire axles with copper to improve on 
tuning rod thermalization

• Rotary piezos heat sunk to still plate via copper 
braid; isolated from cavity via nylon space

— Using fixed antenna (No room for linear drive)

▪ Run Objectives (Cooldown Jan. 27)
— Demonstrate rotary motion of horizontal cavity 

system at mK temperatures 

— Obtain cryogenic modemap of EFR cavity

— Understand thermalization of system

— Implement two-cavity mode locking (Stretch!)
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