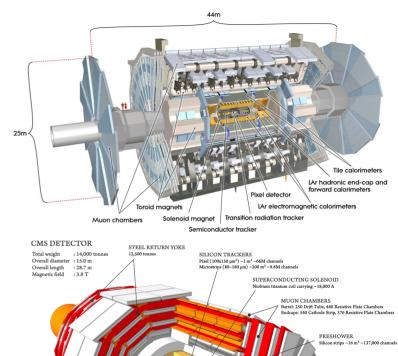
Heavy Flavors at ATLAS and CMS

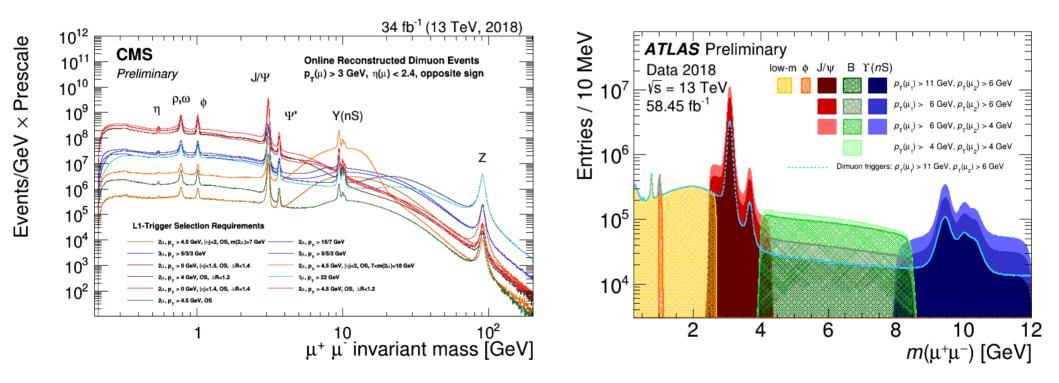
Peter Onyisi, on behalf of ATLAS and CMS

28 Mar 2023


What do we look for?

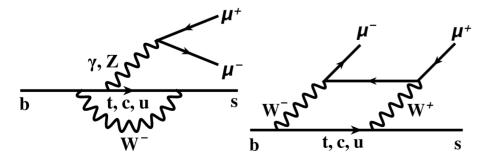
- Searches for new physics:
 - precision measurement of weak hadron decays
 - rare/forbidden decay searches (including decays of leptons)
- Studies of emergent properties:
 - searches for new bound states in QCD, precision spectroscopy
- Tests of calculational abilities
 - Production cross sections, exclusive hadronic decays, ...

Features & Techniques


- Compared to Belle, BaBar:
 - Copious production of B_s , B_c , Λ_b , etc.
 - Can directly produce non-vector resonances
- Compared to LHCb:
 - CMS and ATLAS have central acceptance for tracks ($|\eta| \lesssim 2.5$)
 - Operated at full LHC pileup rate (up to ~ 60 collisions / bunch crossing) higher lumi but much messier environment
 - Weak-to-nonexistent hadron particle ID
 - Kinematic acceptance effectively puts p_T cut on parent hadrons
 - Strong reliance on multi-muon triggers for physics program
- Often use specialized trigger techniques
 - ATLAS: "topological" triggers make selections using information from muon hardware trigger primitives; precision tracking, decay topology selections in software triggers
 - CMS: topological triggers; "data scouting" using triggerreconstructed objects for analysis, throwing away raw data

LECTROMAGNETIC

HADRON CALORIMETER (HCAL Brass + Plastic scintillator ~7.000 chappels ORWARD CALORIMETEI


Dimuon Trigger Performance

4

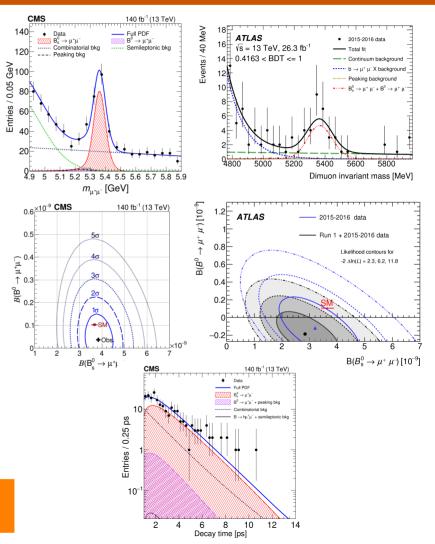
Weak Decays: bs{{

- Interesting vertex with many suggestions of anomalies
- Main probes are for bsµµ: $B_s \rightarrow \mu\mu$ and $B_d \rightarrow K^{(*)}\mu\mu$
 - $^-$ different decays look at different EFT operator structures, e.g. $B_s \to \mu\mu$ probes operators with spin-0 currents
 - $B_d \to K^* \mu \mu$ offers a rich set of angular observables for probes
- Both experiments are interested in also measuring the bsee vertex
 - lepton flavor universality test
 - triggering is a major problem either try to collect a generic B hadron sample (CMS) or use very unusual trigger paths for soft electrons (ATLAS)

Wilson coefficients	largest effect in
C_7, C_7'	$S_1^s, S_1^c, S_2^s, S_2^c, S_3, S_4, S_5, S_6^s,$
	$A_7, A_8, A_9,$
	$BR(B \to X_s \gamma), BR(B \to X_s \mu^+ \mu^-)$
$C_9, C'_9, C_{10}, C'_{10}$	$S_1^s, S_1^c, S_2^s, S_2^c, S_3, S_4, S_5, S_6^s,$
	$A_7, A_8, A_9,$
	$BR(B \to X_s \mu^+ \mu^-)$
$C_S - C'_S$	S_6^c ,
	$BR(B_s \to \mu^+ \mu^-)$
$C_P - C'_P$	$S_1^c + S_2^c,$
	$BR(B_s \to \mu^+ \mu^-)$

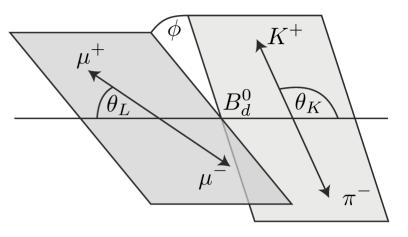
Observable	mostly affected by	
S_1^s,S_1^c,S_2^s,S_2^c	$C_7, C_7', C_9, C_9', C_{10}, C_{10}'$	
S_3	C'_7, C'_9, C'_{10}	
S_4	$C_7, C_7', C_{10}, C_{10}'$	
S_5	C_7, C_7', C_9, C_{10}'	– P₅'
S_6^s	C_7, C_9	
A_7	$C_7, C_7', C_{10}, C_{10}'$	
A_8	$C_7, C_7', C_9, C_9', C_{10}'$	
A_9	C'_7, C'_9, C'_{10}	
S_6^c	$C_S - C'_S$	

from Altmannshofer et al., JHEP 01(2009) 019


$B_s \rightarrow uu$

0.05

Entries


- Rare (but not zero) in SM
 - effective lifetime of decay also carries information
- Search for a dimuon mass peak
 - relatively easy for triggers to target
- Mass resolution is important for S/B and to separate B_d and B_s
 - CMS has edge here, ATLAS separation of B_d and B_s is poor
- Results more or less consistent with SM (ATLAS and LHCb a bit low)

CMS: arXiv:2212.10311 (sub to PLB, 140 fb⁻¹) **ATLAS**: JHEP 04 (2019) 098 (26 fb⁻¹)

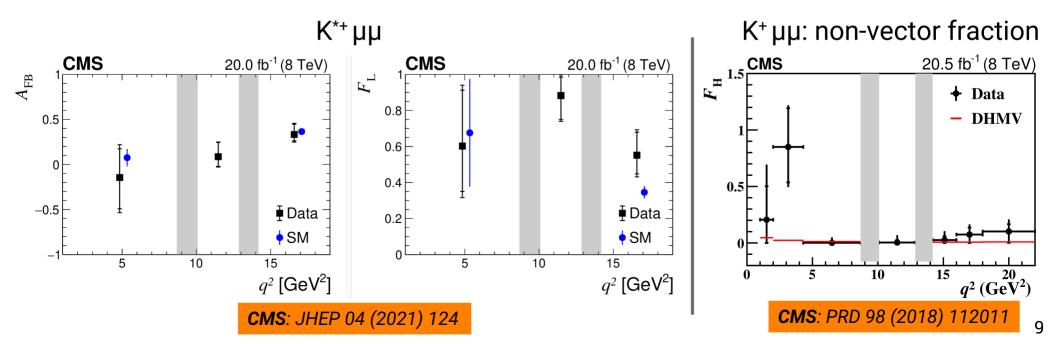
$B \to K^* \mu \mu$

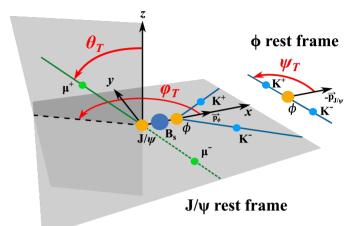
- A large number of potentially accessible decay angular parameters available
- Higher statistics available for $K^{*0} \to K^{+}\pi^{-}$ over $K^{*+} \to K_{S}\pi^{+}$
 - More complete angular analyses done by both experiments for K^{*0} μμ
 - CMS has done simplified analysis for $K^{**}\,\mu\mu$



$$\frac{9}{32\pi} \left[\frac{3(1-F_L)}{4} \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1-F_L}{4} \sin^2 \theta_K \cos 2\theta_L \right]$$
$$-F_L \cos^2 \theta_K \cos 2\theta_L + S_3 \sin^2 \theta_K \sin^2 \theta_L \cos 2\phi$$
$$+S_4 \sin 2\theta_K \sin 2\theta_L \cos \phi + S_5 \sin 2\theta_K \sin \theta_L \cos \phi$$
$$+S_6 \sin^2 \theta_K \cos \theta_L + S_7 \sin 2\theta_K \sin \theta_L \sin \phi$$
$$+S_8 \sin 2\theta_K \sin 2\theta_L \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_L \sin 2\phi$$
$$\left] P'_{j=4,5,6,8} = \frac{S_{i=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$
$$(ignoring potential S-wave K\pi)$$

$B_d \to K^{\star 0} \, \mu \mu$

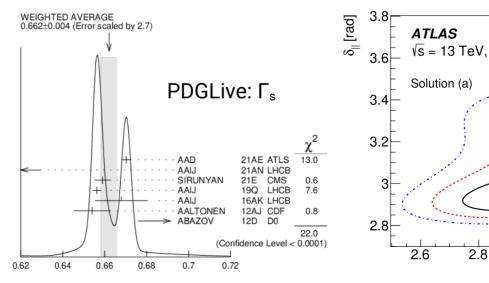

- One particular angular effect has had hints of an anomaly: "P5" for q²($\mu\mu$) above 4 GeV²
- ATLAS a bit high compared to SM, CMS close to SM expectation
 - latest LHCb result (not on plot) continues to be high compared to SM
- Results for different angular observables constrain different EFT operators

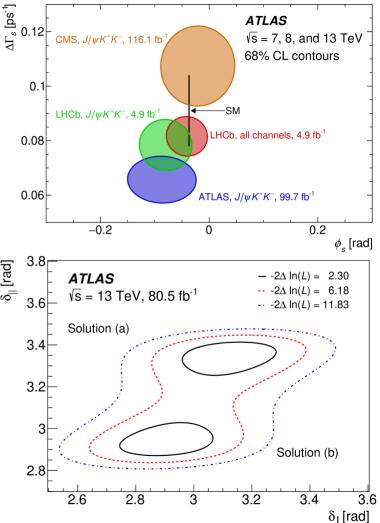

$B^{\scriptscriptstyle +} \to K^{\boldsymbol{\star} \scriptscriptstyle +} \mu \mu$, $K^{\scriptscriptstyle +} \mu \mu$

- $K^{**} \left(\to K_s \pi^* \right) \mu \mu$ has smaller statistics than $K^{*0},$ so fewer parameters are studied
- High statistics but less angular information available for $K^+ \mu \mu$
- Agreement with SM expectations

$B_s \rightarrow J/\psi \ \phi \ (\rightarrow K^+K^-)$

- Classic CP violation test
 - interference between direct decays and decays via mixing
 - weak phase is predicted well from CKM elements: $\phi_s \simeq -2\beta_s = -2 \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)$
 - main parameters of interest are ϕ_s and the lifetime difference of mass eigenstates $\Delta\Gamma_s$; need to determine various strong phases along the way
- Time-dependent angular analysis measures the evolution of the interference with flight distance
 - need to tag production flavor of B_s (signaled by "opposite" B hadron)
 - potentially confounded by scalar KK amplitude

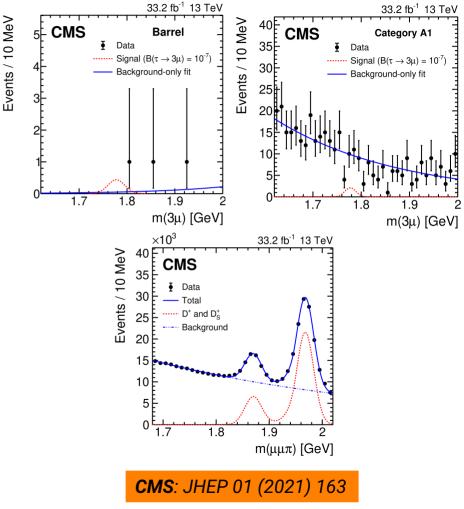



	$O_i(ct,\alpha) = N_i \mathrm{e}^{-\Gamma_{\mathrm{s}}t} \left[a_i \cosh\left(\frac{\Delta\Gamma_{\mathrm{s}}t}{2}\right) + b_i \sinh\left(\frac{\Delta\Gamma_{\mathrm{s}}t}{2}\right) + c_i \cos(\Delta m_{\mathrm{s}}t) + d_i \sin(\Delta m_{\mathrm{s}}t) \right]$						
i	$g_i(heta_{\mathrm{T}}, \psi_{\mathrm{T}}, arphi_{\mathrm{T}})$	N_i	a_i	b_i	Ci	d_i	
1	$2\cos^2\psi_{\mathrm{T}}(1-\sin^2\theta_{\mathrm{T}}\cos^2\varphi_{\mathrm{T}})$	$ A_0(0) ^2$	1	D	С	-S	
2	$\sin^2\psi_{\mathrm{T}}(1-\sin^2\theta_{\mathrm{T}}\sin^2\varphi_{\mathrm{T}})$	$ A_{\parallel}(0) ^2$	1	D	С	-S	
3	$\sin^2\psi_{\rm T}\sin^2\theta_{\rm T}$	$ A_{\perp}(0) ^2$	1	-D	С	S	
4	$-\sin^2\psi_{ m T}\sin2 heta_{ m T}\sinarphi_{ m T}$	$ A_{\parallel}(0) A_{\perp}(0) $	$C\sin(\delta_{\perp}-\delta_{\parallel})$	$S\cos(\delta_{\perp}-\delta_{\parallel})$	$\sin(\delta_{\perp} - \delta_{\parallel})$	$D\cos(\delta_{\perp}-\delta_{\parallel})$	
5	$\frac{1}{\sqrt{2}}\sin 2\psi_{\rm T}\sin^2\theta_{\rm T}\sin 2\varphi_{\rm T}$	$ A_0(0) A_{\parallel}(0) $	$\cos(\delta_{\parallel}-\delta_{0})$	$D\cos(\delta_{\parallel}-\delta_{0})$	$C\cos(\delta_{\parallel}-\ddot{\delta}_{0})$	$-S\cos(\delta_{\parallel}-\delta_{0})$	
6	$\frac{1}{\sqrt{2}}\sin 2\psi_{\rm T}\sin 2\theta_{\rm T}\cos \varphi_{\rm T}$	$ A_0(0) A_{\perp}(0) $	$C\sin(\delta_{\perp}-\delta_0)$	$S\cos(\delta_{\perp}-\delta_0)$	$\sin(\delta_{\perp} - \delta_0)$	$D\cos(\delta_{\perp}-\delta_0)$	
7	$\frac{\sqrt{2}}{3}(1-\sin^2\theta_{\rm T}\cos^2\varphi_{\rm T})$	$ A_{\rm S}(0) ^2$	1	-D	С	S	
8	$\frac{1}{3}\sqrt{6}\sin\psi_{\mathrm{T}}\sin^{2}\theta_{\mathrm{T}}\sin2\varphi_{\mathrm{T}}$	$ A_{\rm S}(0) A_{\ }(0) $	$C\cos(\delta_{\parallel} - \delta_{\rm S})$	$S\sin(\delta_{\parallel} - \delta_{ m S})$	$\cos(\delta_{\parallel} - \delta_{\rm S})$	$D\sin(\delta_{\parallel} - \delta_{\rm S})$	
9	$\frac{1}{3}\sqrt{6}\sin\psi_{\rm T}\sin2\theta_{\rm T}\cos\varphi_{\rm T}$	$ A_{\rm S}(0) A_{\perp}(0) $	$\sin(\delta_{\perp} - \delta_{\rm S})$	$-D\sin(\delta_{\perp}-\delta_{\rm S})$	$C\sin(\delta_{\perp}-\delta_{\rm S})$	$S\sin(\delta_{\perp}-\delta_{\rm S})$	
10	$\frac{4}{3}\sqrt{3}\cos\psi_{\rm T}(1-\sin^2\theta_{\rm T}\cos^2\varphi_{\rm T})$	$ A_{\rm S}(0) A_0(0) $	$C\cos(\delta_0 - \delta_S)$	$S\sin(\delta_0 - \delta_S)$	$\cos(\delta_0 - \delta_S)$	$D\sin(\delta_0 - \delta_S)$	

$B_s \to J/\psi \; \phi$

- Experiments individually in good agreement with SM
- Some tension in fit parameters between experiments
 - hope to resolve with full Run 2 dataset & very close attention to systematics

CMS: PLB 816 (2021) 136188 **ATLAS**: EPJ C 81 (2021) 342



11

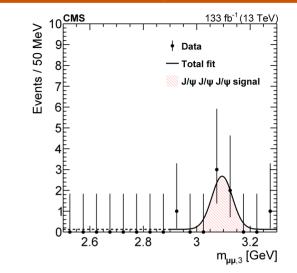
Search for $\tau \to 3 \mu$

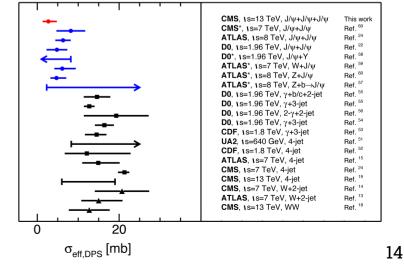
- Search for lepton flavor violation in charged leptons
- Copious production of τ in both electroweak (W
 - $\rightarrow \tau v)$ and heavy-flavor (B/D $\rightarrow \tau v X)$ channels
 - electroweak has lower σ, but easier to suppress backgrounds with MET & isolated high-p_T signal candidate; two channels have similar sensitivity
- Take three-muon combinations and look for a mass peak
 - background suppression with BDT
- For branching fraction determination, need an estimate of total τ production
 - W production is under control
 - Heavy flavor production estimated with a ratio to observed $D_s \to \phi\pi \to \mu\mu\pi$
- $B(\tau \rightarrow 3\mu) < 8.0 \text{ x } 10^{-8} @ 90\% \text{ CL}$

Multi-parton Scattering: Triple J/ψ

- Calculations of pp collisions typically assume we can factorize processes:
 - single hard scatter between one pair of partons, kinematics described by a PDF
 - soft "underlying event"
- Entirely possible to have more complex topologies: multiple hard scatters
 - boundary between single parton scattering + underlying event and multi-parton scattering is a bit arbitrary
 - usual assumption: hard multiple parton scatters are independent of each other with a geometric-like overlap factor
- First observation of triple-J/ψ production from CMS: probe of triple parton scattering
 - single parton scattering rate expected ~ negligible

Pure prompt production: J/ψ 00000000 σ_{SPS}^{3p} SPS: J/ψ 00000000 J/ψ J/ψ $\sigma_{\rm DPS}^{\rm 3\,p}$ DPS: J/w $\int J/\psi$ J/ψ TPS: $\sigma_{\rm TPS}^{\rm 3\,p}$ J/ψ 00000000 J/ψ

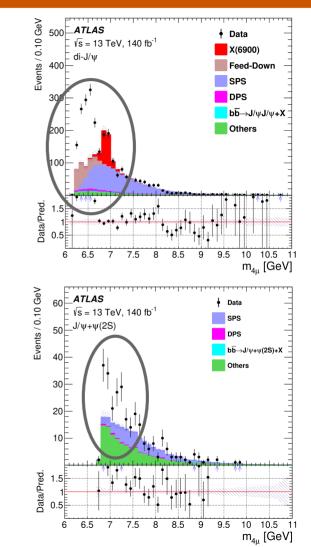

CMS: Nature Phys 19, 338 (2023)


Multi-parton Scattering: Triple J/ ψ

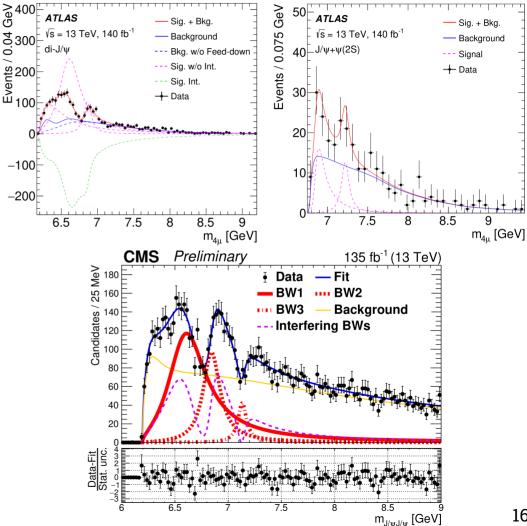
- Observed 5.0^{+2.6}-1.9 triple-J/ψ events in Run 2 data, on a background of 1.0^{+1.4}-0.8
 - significance > 5σ
 - includes both direct and b-decay J/ψ
- Standard ansatz of independent multiparton interactions assumes an effective geometric overlap parameter σ_{eff}

$$\sigma_{\text{TPS}}^{\text{pp}\to\psi_1\psi_2\psi_3+X} = \left(\frac{\mathfrak{m}}{3!}\right) \frac{\sigma_{\text{SPS}}^{\text{pp}\to\psi_1+X}\sigma_{\text{SPS}}^{\text{pp}\to\psi_2+X}\sigma_{\text{SPS}}^{\text{pp}\to\psi_3+X}}{\sigma_{\text{eff},\text{TPS}}^2}$$
$$\sigma_{\text{eff},\text{TPS}}^2 = \left(0.82\pm0.11\right)\sigma_{\text{eff},\text{DPS}}$$

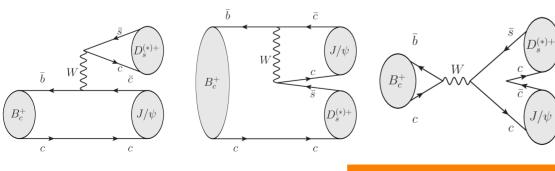
- Mounting evidence that σ_{eff} is not universal for different processes
 - different initial states? Bjorken x-dependence? badly-handled SPS?



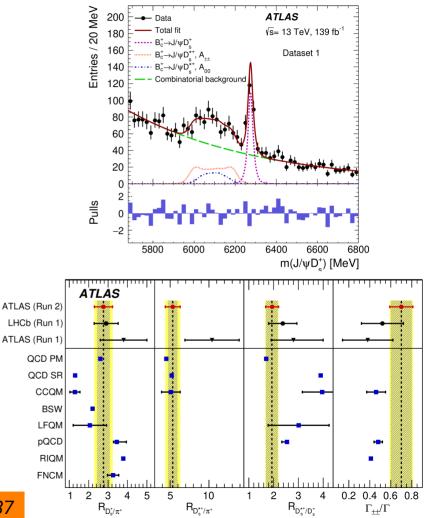
New Structures


- Slowly uncovering a rich spectroscopy of multi-quark structures outside the qq, qqq paradigm
 - tetraquarks, pentaquarks? molecules? dynamic effects?
- Structures observed in di-J/ ψ , J/ ψ + ψ (2S) mass spectra by LHCb, ATLAS, CMS
- Feed-down from J/ψ+ψ(2S) to di-J/ψ is nontrivial
 - systems need to be understood in a coherent manner

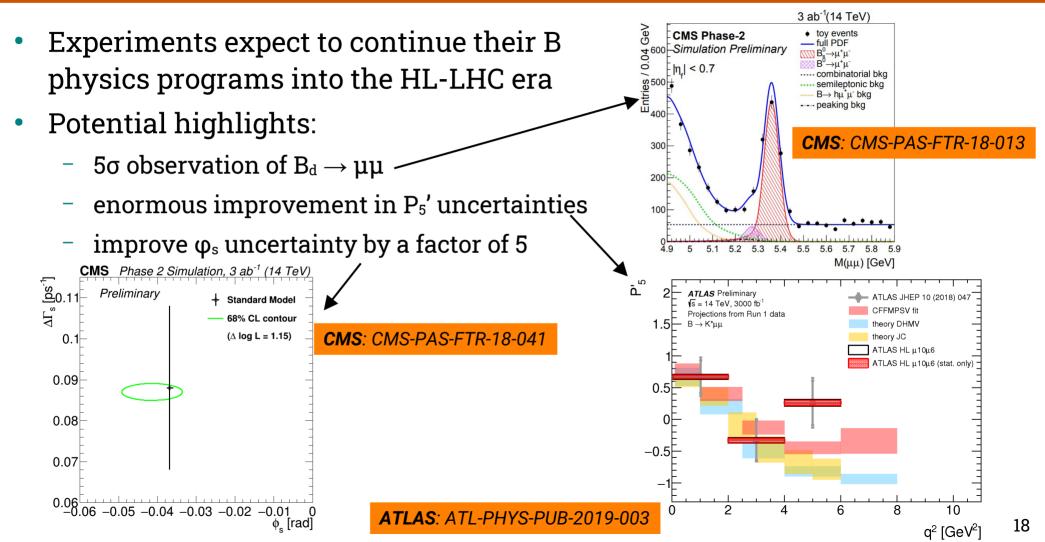
ATLAS: BPHY-2022-01 **CMS**: CMS-PAS-BPH-21-003


Di-charmonium Structures

- Excesses over background expectations observed at many σ
- Background models are quite different
- Experiments have different preferred fits
 - interference is seemingly important
 - all experiments agree on an X(6900)
 - CMS sees evidence for an X(7300) in di- J/ψ ; ATLAS sees a weak hint for this in $J/\psi+\psi(2S)$
 - nature of threshold enhancement unclear
- Further progress will rely heavily on angular analysis for spin-parity



Exclusive Hadronic Decays: $B_c \to J/\psi \; D_s{}^{(*)}$


- Can we work out the properties of specific hadronic final states in weak decays?
- Look at $B_c \to J/\psi D_s^{(*)}$: same quark content but different spins, can measure polarization states
- Certain calculations much more consistent with data than others

ATLAS: JHEP 08 (2022) 087

Projections

Summary

- Active program in heavy flavor in ATLAS and CMS
- "Classic" measurements: CP violation in $B_s \to J/\psi~\phi,$ search for rate modifications in $B_s \to \mu\mu$
- Following up potential interesting physics in the bs?? vertex
- Additional searches for rare/forbidden decays
- More bread-and-butter work on spectroscopy, QCD factorization, calculational methods ...

Extra

Triple J/ ψ Cross Sections

Process:	3 prompt	2 prompt+1 nonprompt	1 prompt+2 nonprompt	3 nonprompt	Total
$\sigma_{\rm SPS}^{3{\rm J}/\psi}$ (fb)	< 0.005	5.7	0.014	12	18
$N_{ m SPS}^{ m 3J/\psi}$	0.0	0.10	0.0	0.22	0.32
$\sigma_{ m DPS}^{ m 3J/\psi}$ (fb)	8.4	8.9	90	95	202
$N_{ m DPS}^{3J/\psi}$	0.15	0.16	1.65	1.75	3.7
$\sigma_{\mathrm{TPS}}^{\mathrm{3J/\psi}}$ (fb)	6.1	19.4	20.4	7.2	53
$N_{ m TPS}^{ m 3J/\psi}$	0.11	0.36	0.38	0.13	1.0
$\sigma_{\rm tot}^{\rm 3J/\psi}$ (fb)	15	34	110	114	272
$N_{\rm tot}^{3J/\psi}$	0.3	0.6	2.0	2.1	5.0

$Di-J/\psi$ States

- ATLAS models:
 - A = interference of three resonances + noninterfering nonresonant background
 - B = interference of two resonances
 + nonresonant background

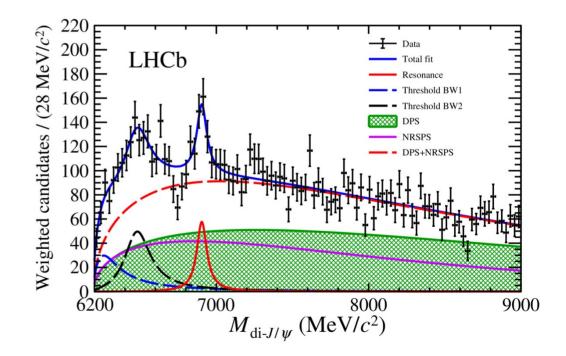
${ m di}$ - J/ψ	model A	model B
m_0	$6.41 \pm 0.08^{+0.08}_{-0.03}$	$6.65 \pm 0.02^{+0.03}_{-0.02}$
Γ_0	$0.59 \pm 0.35 ^{+0.12}_{-0.20}$	$0.44 \pm 0.05^{+0.06}_{-0.05}$
m_1	$6.63 \pm 0.05^{+0.08}_{-0.01}$	
Γ_1	$0.35 \pm 0.11^{+0.11}_{-0.04}$	_
m_2	$6.86 \pm 0.03^{+0.01}_{-0.02}$	$6.91 \pm 0.01 \pm 0.01$
Γ_2	$0.11 \pm 0.05 \substack{+0.02 \\ -0.01}$	$0.15 \pm 0.03 \pm 0.01$
$\Delta s/s$	$\pm 5.1\%^{+8.1\%}_{-8.9\%}$	—
$J/\psi + \psi(2S)$	model α	model β
m_3 or m	$7.22 \pm 0.03 ^{+0.01}_{-0.03}$	$6.96 \pm 0.05 \pm 0.03$
Γ_3 or Γ	$0.09 \pm 0.06^{+0.06}_{-0.03}$	$0.51 \pm 0.17^{+0.11}_{-0.10}$
$\Delta s/s$	$\pm 21\% \pm 14\%$	$\pm 20\% \pm 12\%$

CMS: threshold enhancement
 + three resonances, with or
 without interference

-		BW1	BW2	BW3
No	т	$6552\pm10\pm12$	$6927\pm9\pm5$	$7287 \pm 19 \pm 5$
interference	Γ	$124\pm29\pm34$	$122\pm22\pm19$	$95\pm46\pm20$
	N	474 ± 113	492 ± 75	156 ± 56

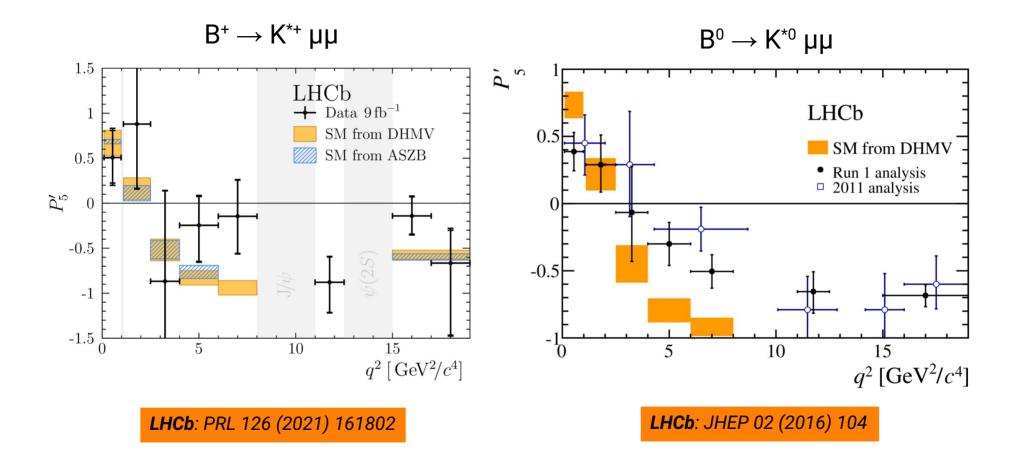
		BW1	BW2	BW3
Interference	<i>m</i> [MeV]	6638^{+43+16}_{-38-31}	6847^{+44+48}_{-28-20}	7134_{-25-15}^{+48+41}
	Γ [MeV]	$444_{-199-235}^{+226+109}$	191_{-49-17}^{+66+25}	97^{+40+29}_{-29-26}

$Di-J/\psi$: LHCb


Comparable statistics

No X(6900) interference $m[X(6900)] = 6905 \pm 11 \pm 7 \,\text{MeV}/c^2$

 $\Gamma[X(6900)] = 80 \pm 19 \pm 33 \,\mathrm{MeV},$


X(6900) interference $m[X(6900)] = 6886 \pm 11 \pm 11 \text{ MeV}/c^2$

 $\Gamma[X(6900)] = 168 \pm 33 \pm 69 \,\mathrm{MeV}.$

LHCb: Science Bulletin 65 (2020) 1983

P₅': LHCb

