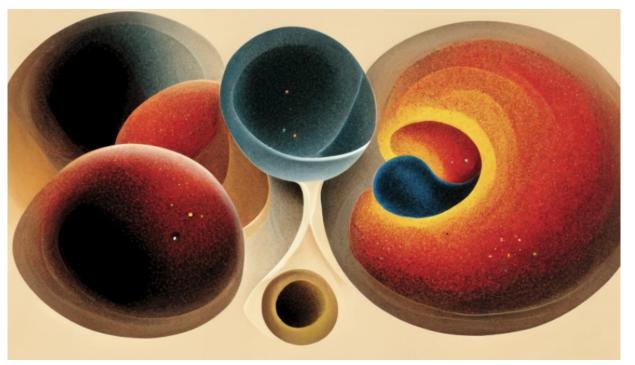
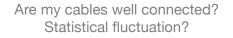
# Semi-leptonic Transitions at High-p<sub>T</sub>

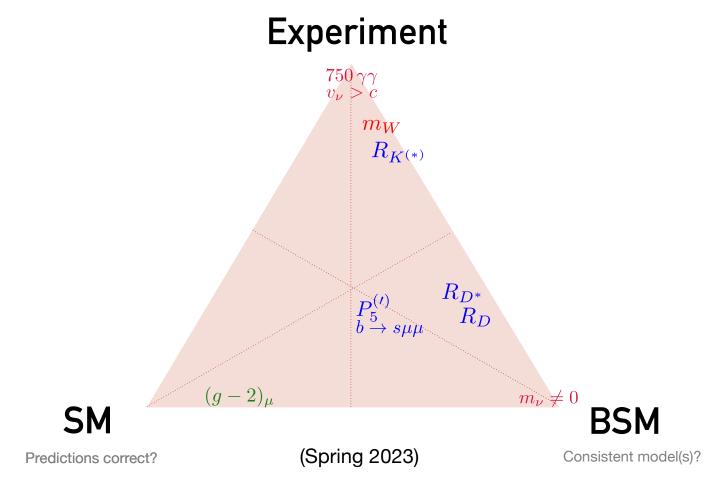
Darius A. Faroughy Rutgers University, NHETC



"The flavor hierarchies in particle physics"

Prospecting for New Physics through Flavor, Dark Matter and Machine Learning Aspen Center for Physics, 26-30 March 2023

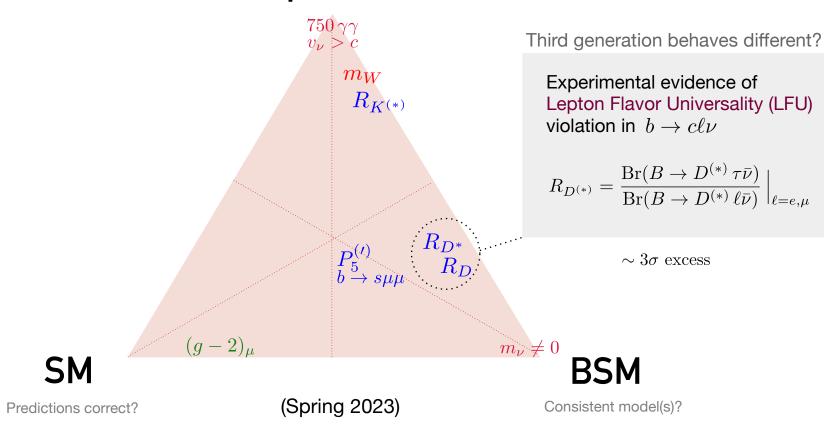




"Anomaly sentiment" Simplex

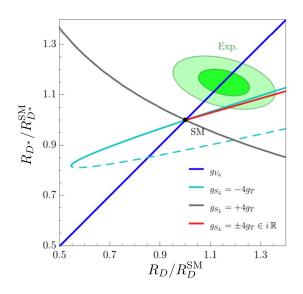
Are my cables well connected? Statistical fluctuation?

#### Experiment



"Anomaly sentiment" Simplex

# RD(\*) and high-p<sub>T</sub> ditaus

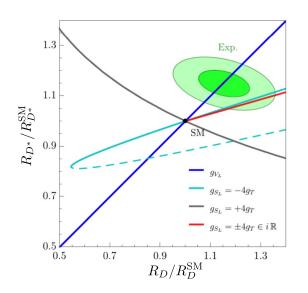


Low-energy EFT fit  $\mathcal{O}_{V_L} = (\bar{c}_L \gamma^{\mu} b_L) (\bar{\tau}_L \gamma^{\mu} \nu_{\tau})$   $\mathcal{O}_{S_L} = (\bar{c}_R b_L) (\bar{\tau}_R \nu_{\tau})$   $\mathcal{O}_T = (\bar{c}_R \sigma^{\mu\nu} b_L) (\bar{\tau}_R \sigma^{\mu\nu} \nu_{\tau})$   $b \rightarrow c \tau \nu$   $b \rightarrow c \tau \nu$ 

Characteristic NP scale:  $\Lambda \sim 3\,{
m TeV}$ 

Strong physics case for LHC!!

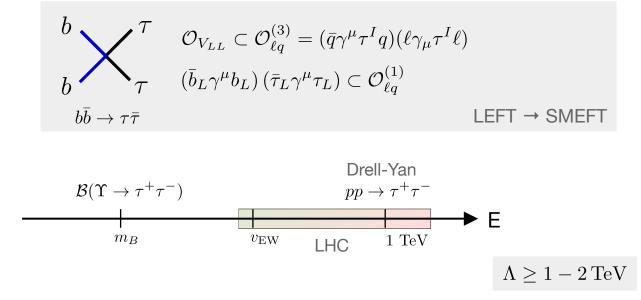
# RD(\*) and high-p<sub>T</sub> ditaus

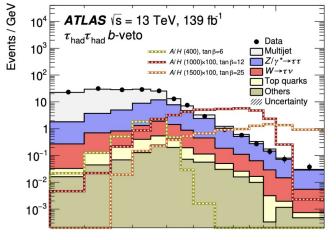


Low-energy EFT fit $b \to c\tau\nu$  $\mathcal{O}_{V_L} = (\bar{c}_L \gamma^{\mu} b_L) (\bar{\tau}_L \gamma^{\mu} \nu_{\tau})$  $b \longrightarrow c\tau\nu$  $\mathcal{O}_{S_L} = (\bar{c}_R b_L) (\bar{\tau}_R \nu_{\tau})$  $b \longrightarrow c\tau\nu$  $\mathcal{O}_T = (\bar{c}_R \sigma^{\mu\nu} b_L) (\bar{\tau}_R \sigma^{\mu\nu} \nu_{\tau})$  $c \longrightarrow \nu$ Characteristic NP scale: $\Lambda \sim 3 \text{ TeV}$ Strong physics case for LHC!!

• Generic prediction: New (large) effects in 3<sup>rd</sup> gen neutral currents

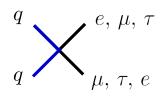
DAF, Greljo, Kamenik [Phys .Lett. B 764 (2017)126-134]





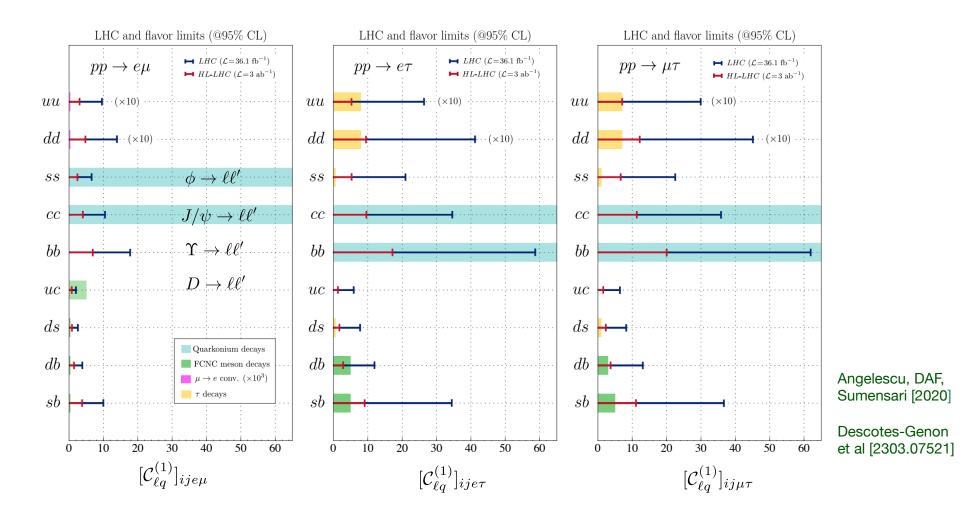
Non-resonant deviation in Ditau tails at high- $p_T$ 

# Lepton Flavor Violation at high-p<sub>T</sub>?



$$[\mathcal{O}_{\ell q}^{(1)}]_{ij\alpha\beta} = (\bar{q}_i \gamma^{\mu} q_j)(\bar{\ell}_{\alpha} \gamma_{\mu} \ell_{\beta}) \quad \alpha \neq \beta$$

Recast:  $Z' 
ightarrow e\mu, \mu au, au e$  ATLAS [1807.06573]



• LHC Limits on **Quark flavor-conserving transitions** beats Quarkonia limits

• Possibility of probing charm transitions much better than low-energy experiments.

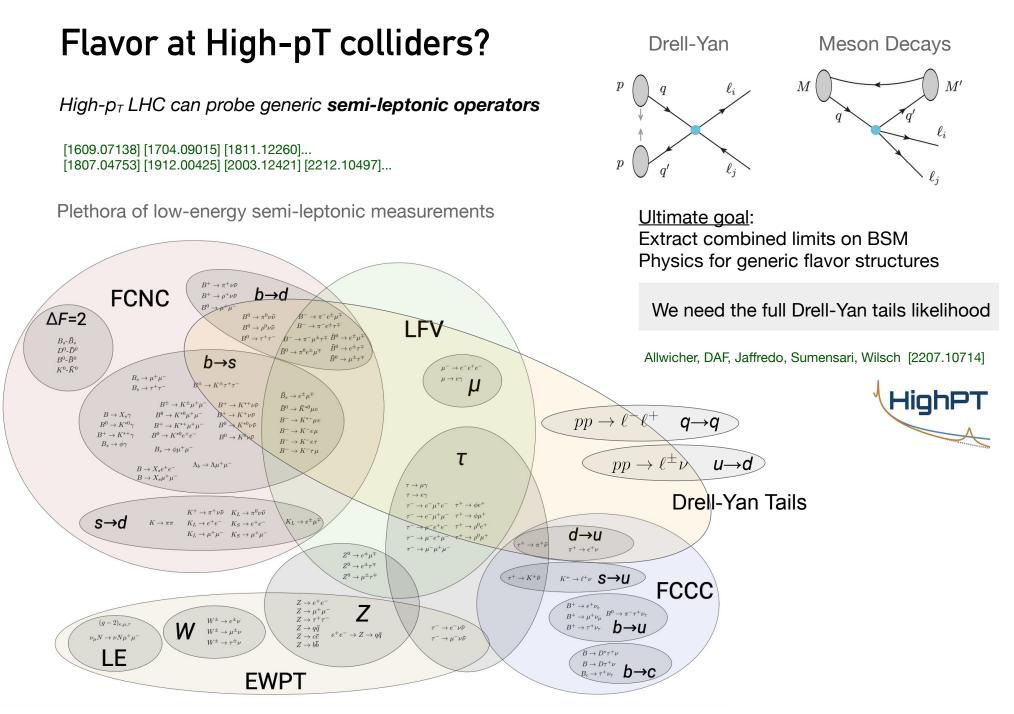


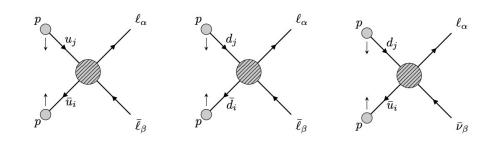
Image by D. Straub

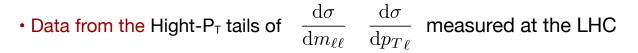
# Semi-leptonic transitions at High-P<sub>T</sub>

• Charged and Neutral Drell-Yan processes:  $q_i \bar{q}_j \rightarrow \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp} \qquad q_i \bar{q}_j \rightarrow \ell_{\alpha}^{\pm} \nu_{\beta}$ 

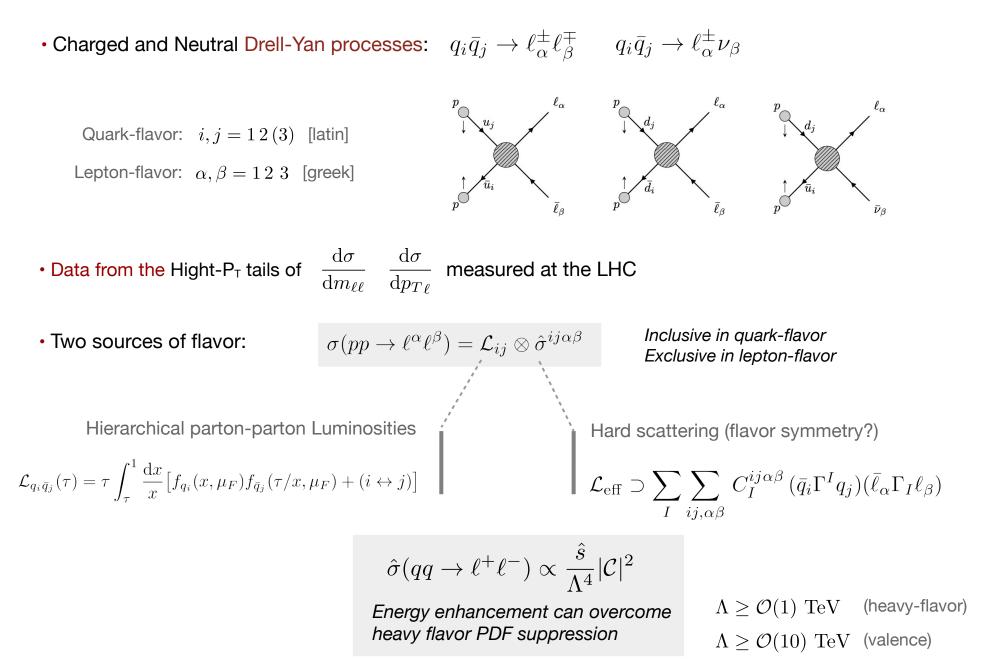
Quark-flavor: i, j = 12(3) [latin]

Lepton-flavor:  $\alpha, \beta = 123$  [greek]





# Semi-leptonic transitions at High-P<sub>T</sub>

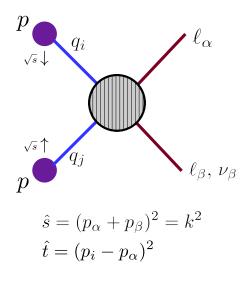


### **Drell-Yan Tails Beyond the SM**

 $\mathcal{A}_{i}$ 

-6-

• General amplitude decomposition of  $2 \rightarrow 2$  semi-leptonic scattering in terms of Form Factors:



$$j_{\alpha\beta} = \frac{1}{v^2} \sum_{XY} \left[ \left( \bar{\ell}_{\alpha} \mathbb{P}_X \ell_{\beta} \right) (\bar{q}_i \mathbb{P}_Y q_j) \left[ \mathcal{F}_S^{XY}(\hat{s}, \hat{t}) \right]_{ij\alpha\beta} \right] \\ + \left( \bar{\ell}_{\alpha} \gamma^{\mu} \mathbb{P}_X \ell_{\beta} \right) (\bar{q}_i \gamma_{\mu} \mathbb{P}_Y q_j) \left[ \mathcal{F}_V^{XY}(\hat{s}, \hat{t}) \right]_{ij\alpha\beta} \right] \\ + \left( \bar{\ell}_{\alpha} \sigma^{\mu\nu} \mathbb{P}_X \ell_{\beta} \right) (\bar{q}_i \sigma_{\mu\nu} \mathbb{P}_Y q_j) \left[ \mathcal{F}_T^{XY}(\hat{s}, \hat{t}) \right]_{ij\alpha\beta} \\ + \left( \bar{\ell}_{\alpha} \sigma^{\mu\nu} \mathbb{P}_X \ell_{\beta} \right) (\bar{q}_i \sigma_{\mu\nu} \mathbb{P}_Y q_j) \frac{ik^{\nu}}{v} \left[ \mathcal{F}_{D_q}^{XY}(\hat{s}, \hat{t}) \right]_{ij\alpha\beta} \\ + \left( \bar{\ell}_{\alpha} \sigma^{\mu\nu} \mathbb{P}_X \ell_{\beta} \right) (\bar{q}_i \gamma_{\mu} \mathbb{P}_Y q_j) \frac{ik_{\nu}}{v} \left[ \mathcal{F}_{D_{\ell}}^{XY}(\hat{s}, \hat{t}) \right]_{ij\alpha\beta} \\ - Dipoles \\ X, Y \in \{L, R\}$$

• Form Factor parametrization:  $\mathcal{F}_{I}^{XY}(\hat{s},\hat{t}) = \mathcal{F}_{I, \operatorname{Regular}}^{XY}(\hat{s},\hat{t}) + \mathcal{F}_{I, \operatorname{Singular}}^{XY}(\hat{s},\hat{t}) \qquad I \in \{S, V, T, D_{\ell}, D_{q}\}$ 

$$\begin{cases} \mathcal{F}_{I,\,\mathrm{Regular}}^{XY}(\hat{s},\hat{t}) = \sum_{n,m=0}^{\infty} \mathcal{F}_{I(n,m)}^{XY} \left(\frac{\hat{s}}{v^2}\right)^n \left(\frac{\hat{t}}{v^2}\right)^m & \text{unresolved d.o.f} \\ \mathcal{F}_{I,\,\mathrm{Singular}}^{XY}(\hat{s},\hat{t}) = \sum_a \frac{v^2 \mathcal{S}_{I,\,a}^{XY}}{\hat{s} - \Omega_a} + \sum_b \frac{v^2 \mathcal{T}_{I,\,b}^{XY}}{\hat{t} - \Omega_b} - \sum_c \frac{v^2 \mathcal{U}_{I,\,c}^{XY}}{\hat{s} + \hat{t} + \Omega_c} & \text{resolved d.o.f} \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

# **Drell-Yan and SMEFT**

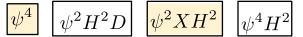
- SM effective Lagrangian:  $\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}}$ 

$$+ \sum_i rac{\mathcal{C}_i^6}{\Lambda^2} \mathcal{O}_i^6 + \sum_i rac{\mathcal{C}_i^8}{\Lambda^4} \mathcal{O}_i^8 + \cdots$$

$$\mathrm{d}\sigma \sim |\mathcal{A}_{\mathrm{SM}}|^2 + \frac{1}{\Lambda^2} \sum_i \mathcal{C}_i^6 \mathcal{A}_i^6 \mathcal{A}_{\mathrm{SM}}^* + \frac{1}{\Lambda^4} \left( \sum_{ij} \mathcal{C}_i^6 \mathcal{C}_j^{6*} \mathcal{A}_i^6 \mathcal{A}_j^{6*} + \sum_i \mathcal{C}_i^8 \mathcal{A}_i^8 \mathcal{A}_{\mathrm{SM}}^* \right) + \mathcal{O}\left(\frac{1}{\Lambda^6}\right) \,.$$

Consistent truncation at  $\mathcal{O}(\Lambda^{-4})$  requires **d=6** and **d=8** operators

• Operator classes for Drell-Yan:



$$\psi^4 D^2 \hspace{0.1 cm} \psi^2 H^4 D \hspace{0.1 cm} \psi^2 H^2 D^3$$

| d = 6                                                                                                                 | $\psi^4$                                                             | $pp  ightarrow \ell\ell$ | $pp 	o \ell  u$ |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------|-----------------|
| $\mathcal{O}_{lq}^{(1)}$                                                                                              | $(ar{l}_lpha \gamma^\mu l_eta)(ar{q}_i \gamma_\mu q_j)$              | $\checkmark$             | -               |
| $\mathcal{O}_{lq}^{(1)}\ \mathcal{O}_{lq}^{(3)}$                                                                      | $(ar{l}_lpha \gamma^\mu 	au^I l_eta) (ar{q}_i \gamma_\mu 	au^I q_j)$ | $\checkmark$             | $\checkmark$    |
| $\mathcal{O}_{lu}$                                                                                                    | $(ar{l}_lpha \gamma^\mu l_eta)(ar{u}_i \gamma_\mu u_j)$              | $\checkmark$             | -               |
| $\mathcal{O}_{ld}$                                                                                                    | $(ar{l}_lpha\gamma^\mu l_eta)(ar{d}_i\gamma_\mu d_j)$                | $\checkmark$             | -               |
| $\mathcal{O}_{eq}$                                                                                                    | $(ar{e}_lpha\gamma^\mu e_eta)(ar{q}_i\gamma_\mu q_j)$                | $\checkmark$             | -               |
| $\mathcal{O}_{eu}$                                                                                                    | $(ar{e}_lpha\gamma^\mu e_eta)(ar{u}_i\gamma_\mu u_j)$                | $\checkmark$             | _               |
| $\mathcal{O}_{ed}$                                                                                                    | $(ar{e}_lpha\gamma^\mu e_eta)(ar{d}_i\gamma_\mu d_j)$                | $\checkmark$             | -               |
| $\mathcal{O}_{ledq}$ + h.c.                                                                                           | $(ar{l}_lpha e_eta)(ar{d}_i q_j)$                                    | $\checkmark$             | $\checkmark$    |
| $\mathcal{O}_{lequ}^{(1)}+	ext{h.c.}$                                                                                 | $(ar{l}_lpha e_eta)arepsilon(ar{q}_i u_j)$                           | $\checkmark$             | $\checkmark$    |
| $ \begin{array}{c} \mathcal{O}_{lequ}^{(1)} + \mathrm{h.c.} \\ \mathcal{O}_{lequ}^{(3)} + \mathrm{h.c.} \end{array} $ | $(ar{l}_lpha\sigma^{\mu u}e_eta)arepsilon(ar{q}_i\sigma_{\mu u}u_j)$ | $\checkmark$             | ✓               |

| d=6                | $\psi^2 XH$ + h.c.                                                 | $pp  ightarrow \ell\ell$ | $pp 	o \ell  u$ |
|--------------------|--------------------------------------------------------------------|--------------------------|-----------------|
| $\mathcal{O}_{eW}$ | $(\bar{l}_{lpha}\sigma^{\mu u}e_{eta})	au^{I}HW^{I}_{\mu u}$       | $\checkmark$             | $\checkmark$    |
| $\mathcal{O}_{eB}$ | $(ar{l}_lpha \sigma^{\mu u} e_eta) H B_{\mu u}$                    | $\checkmark$             | _               |
| $\mathcal{O}_{uW}$ | $(\bar{q}_i \sigma^{\mu u} u_j)  \tau^I \widetilde{H} W^I_{\mu u}$ | $\checkmark$             | $\checkmark$    |
| $\mathcal{O}_{uB}$ | $\left(ar{q}_i\sigma^{\mu u}u_j ight)\widetilde{H}B_{\mu u}$       | $\checkmark$             | _               |
| $\mathcal{O}_{dW}$ | $\left(ar{q}_i\sigma^{\mu u}d_j ight)	au^IHW^I_{\mu u}$            | $\checkmark$             | $\checkmark$    |
| $\mathcal{O}_{dB}$ | $(ar q_i \sigma^{\mu u}  d_j) H B_{\mu u}$                         | $\checkmark$             |                 |

Focus on operators with xsec that grow with Energy O(1000) flavored Wilson coefficients in Drell-Yan!

| d=8                                                                                                                                         | $\psi^4 D^2$                                                                                                                    | $pp  ightarrow \ell \ell$ | $pp 	o \ell  u$ |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|
| $\mathcal{O}_{l^2q^2D^2}^{(1)}$                                                                                                             | $D^ u(ar{l}_lpha\gamma^\mu l_eta)D_ u(ar{q}_i\gamma_\mu q_j)$                                                                   | $\checkmark$              | -               |
| $\mathcal{O}_{12}^{(2)}$                                                                                                                    | $(\bar{l}_{lpha}\gamma^{\mu}\overleftrightarrow{D}^{ u}l_{eta})(ar{q}_{i}\gamma_{\mu}\overleftrightarrow{D}_{ u}q_{j})$         | $\checkmark$              |                 |
| 012 2 02                                                                                                                                    | $D^{ u}(ar{l}_{lpha}\gamma^{\mu}	au^{I}l_{eta})D_{ u}(ar{q}_{i}\gamma_{\mu}	au^{I}q_{j})$                                       | $\checkmark$              | $\checkmark$    |
| $O_{l^2 a^2 D^2}$                                                                                                                           | $(\bar{l}_{lpha}\gamma^{\mu}\overleftrightarrow{D}^{I u}l_{eta})(\bar{q}_{i}\gamma_{\mu}\overleftrightarrow{D}^{I}_{ u}q_{j})$  | $\checkmark$              | $\checkmark$    |
| $\mathcal{O}_{l^2 u^2 D^2}^{(1)}$                                                                                                           | $D^ u(ar{l}_lpha\gamma^\mu l_eta)D_ u(ar{u}_i\gamma_\mu u_j)$                                                                   | $\checkmark$              | _               |
| $U_{l^{2}u^{2}D^{2}}$                                                                                                                       | $(\bar{l}_{lpha}\gamma^{\mu}\overleftrightarrow{D}^{ u}l_{eta})(\bar{u}_{i}\gamma_{\mu}\overleftrightarrow{D}_{ u}u_{j})$       | $\checkmark$              | —               |
| $\frac{\mathcal{O}_{l^2d^2D^2}^{(1)}}{\mathcal{O}_{l^2d^2D^2}^{(2)}}\\ \frac{\mathcal{O}_{l^2d^2D^2}^{(2)}}{\mathcal{O}_{l^2d^2D^2}^{(1)}}$ | $D^ u(ar{l}_lpha\gamma^\mu l_eta)D_ u(ar{d}_i\gamma_\mu d_j)$                                                                   | $\checkmark$              |                 |
| $\mathcal{O}_{l^2 d^2 D^2}^{(2)}$                                                                                                           | $(ar{l}_{lpha}\gamma^{\mu}\overleftrightarrow{D}^{ u}l_{eta})(ar{d}_{i}\gamma_{\mu}\overleftrightarrow{D}_{ u}d_{j})$           | $\checkmark$              |                 |
| $\mathcal{O}_{q^2 e^2 D^2}^{(1)}$                                                                                                           | $D^ u(ar q_i\gamma^\mu q_j)D_ u(ar e_lpha\gamma_\mu e_eta)$                                                                     | $\checkmark$              | -               |
| ${\cal O}^{(2)}_{q^2 e^2 D^2}$                                                                                                              | $(\bar{q}_i \gamma^\mu \overleftarrow{D}^ u q_j) (\bar{e}_lpha \gamma_\mu \overleftarrow{D}_ u e_eta)$                          | $\checkmark$              | -               |
| $\mathcal{O}_{e^{2}u^{2}D^{2}}^{(1)}$                                                                                                       | $D^{ u}(ar{e}_{lpha}\gamma^{\mu}e_{eta})D_{ u}(ar{u}_{i}\gamma_{\mu}u_{j})$                                                     | $\checkmark$              | _               |
| ${\cal O}^{(2)}_{e^2 u^2 D^2}$                                                                                                              | $(\bar{e}_{lpha}\gamma^{\mu}\overleftrightarrow{D}^{ u}e_{eta})(\bar{u}_{i}\gamma_{\mu}\overleftrightarrow{D}_{ u}u_{j})$       | $\checkmark$              | _               |
| $\mathcal{O}_{e^2 u^2 D^2}^{(-)} \\ \mathcal{O}_{e^2 d^2 D^2}^{(1)} \\ \mathcal{O}_{e^2 d^2 D^2}^{(2)}$                                     | $D^{ u}(ar{e}_{lpha}\gamma^{\mu}e_{eta})D_{ u}(ar{d}_{i}\gamma_{\mu}d_{j})$                                                     | $\checkmark$              | _               |
| $\mathcal{O}^{(2)}_{e^2 d^2 D^2}$                                                                                                           | $(\bar{e}_{\alpha}\gamma^{\mu}\overleftrightarrow{D}^{\nu}e_{\beta})(\bar{d}_{i}\gamma_{\mu}\overleftrightarrow{D}_{\nu}d_{j})$ | √                         |                 |

Murphy [2005.00059]

#### **Drell-Yan and SMEFT**

- Matching to regular Form Factors:  $\mathcal{F}_{I(n,m)}^{XY} = \sum_{d \ge 2(n+m+3)}^{\infty} C_{I}^{d} \left(\frac{v}{\Lambda}\right)^{d-4} \qquad \begin{array}{c} n+m=0 \quad \longleftarrow \quad d=\mathbf{6}, \ 8, \ 10, \ \cdots \\ n+m=1 \quad \longleftarrow \quad d=\mathbf{8}, \ 10, \ \cdots \\ n+m=2 \quad \longleftarrow \quad d=\mathbf{10}, \cdots \end{array}$ 
  - Ex: Vector Form Factors at  $\mathcal{O}(\Lambda^{-4})$

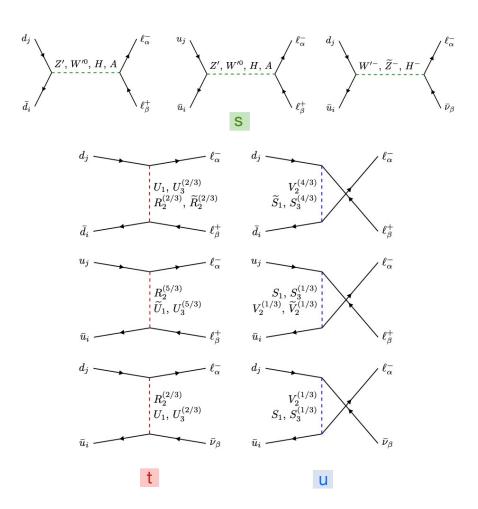
$$\mathcal{F}_{V}^{XY} = \mathcal{F}_{V(0,0)}^{XY} + \mathcal{F}_{V(1,0)}^{XY} \frac{\hat{s}}{v^{2}} + \mathcal{F}_{V(0,1)}^{XY} \frac{\hat{t}}{v^{2}} + \sum_{a} \frac{v^{2} \left(\mathcal{S}_{\mathrm{SM},a}^{XY} + \delta \mathcal{S}_{V,a}^{XY}\right)}{\hat{s} - m_{a}^{2} - im_{a}\Gamma_{a}} \qquad a \in \{\gamma, Z, W^{\pm}\}$$

dim = 6 
$$\psi^{4} \qquad \begin{array}{c} \mathcal{O}_{\ell q}^{(1)} & \mathcal{O}_{\ell q}^{(3)} & \mathcal{O}_{\ell u} \\ \mathcal{O}_{\ell d} & \mathcal{O}_{eq} & \mathcal{O}_{eu} & \mathcal{O}_{ed} \end{array}$$

$$\dim = 8 \qquad \boxed{\psi^4 D^2} \qquad \frac{\mathcal{O}_{\ell^2 q^2 D^2}^{(1)} = D^{\mu}(\bar{\ell}\gamma^{\mu}\ell)D_{\nu}(\bar{q}\gamma_{\mu}q)}{\mathcal{O}_{\ell^2 q^2 D^2}^{(2)} = (\bar{\ell}\gamma^{\mu}\overleftrightarrow{D}^{\nu}\ell)(\bar{q}\gamma_{\mu}\overleftrightarrow{D}_{\nu}q)}$$

These dim=8 effects can be relevant! New dim=8 "angular" effects Boughezal et al. [2106.05337] Allwicher et al. [2207.10714] Alioli et al. [2003.11615]

#### **Tree-level mediators**



|                   | SM rep.                      | $\operatorname{Spin}$ | $\mathcal{L}_{\mathrm{int}}$                                                                                                                                                                                         |
|-------------------|------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z'                | ( <b>1</b> , <b>1</b> ,0)    | 1                     | $\mathcal{L}_{Z'} = \sum_{\psi} [g_1^{\psi}]_{ab}  ar{\psi}_a oldsymbol{Z}' \psi_b \hspace{0.2cm}, \hspace{0.2cm} \psi \in \{u,d,e,q,l\}$                                                                            |
| $\widetilde{Z}$   | ( <b>1</b> , <b>1</b> ,1)    | 1                     | ${\cal L}_{\widetilde{Z}}=[\widetilde{g}_1^q]_{ij} ar{u}_i ec{Z} d_j + [\widetilde{g}_1^\ell]_{lphaeta} ar{e}_lpha ec{Z} N_eta$                                                                                      |
| $\Phi_{1,2}$      | ( <b>1</b> , <b>2</b> ,1/2)  | 0                     | $\mathcal{L}_{\Phi} = \sum_{a=1,2} \left\{ [y_u^{(a)}]_{ij}  \bar{q}_i u_j \widetilde{H}_a + [y_d^{(a)}]_{ij}  \bar{q}_i d_j H_a + [y_e^{(a)}]_{\alpha\beta}  \bar{l}_{\alpha} e_{\beta} H_a \right\} + \text{h.c.}$ |
| W'                | ( <b>1</b> , <b>3</b> ,0)    | 1                     | $\mathcal{L}_{W'} = [g_3^q]_{ij}  ar{q}_i (	au^I  { ensuremath{\mathcal{W}}^\prime}^I) q_j + [g_3^l]_{lphaeta}  ar{l}_lpha (	au^I  { ensuremath{\mathcal{W}}^\prime}^I) l_eta$                                       |
| $S_1$             | $(\mathbf{\bar{3}},1,1/3)$   | 0                     | $\mathcal{L}_{S_1} = [y_1^L]_{i\alpha} S_1 \bar{q}_i^c \epsilon l_\alpha + [y_1^R]_{i\alpha} S_1 \bar{u}_i^c e_\alpha + \ [\bar{y}_1^R]_{i\alpha} S_1 \bar{d}_i^c N_\alpha + \text{h.c.}$                            |
| $\widetilde{S}_1$ | $(\bar{3},1,4/3)$            | 0                     | $\mathcal{L}_{\widetilde{S}_1} = [\widetilde{y}_1^R]_{i\alpha}  \widetilde{S}_1 \bar{d}_i^c e_\alpha + \mathrm{h.c.}$                                                                                                |
| $U_1$             | ( <b>3</b> , <b>1</b> ,2/3)  | 1                     | $\mathcal{L}_{U_1} = [x_1^L]_{i\alpha}  \bar{q}_i \psi_1 l_\alpha + [x_1^R]_{i\alpha}  \bar{d}_i \psi_1 e_\alpha + [\bar{x}_1^R]_{i\alpha}  \bar{u}_i \psi_1 N_\alpha + \text{h.c.}$                                 |
| $\widetilde{U}_1$ | $({f 3},{f 1},5/3)$          | 1                     | $\mathcal{L}_{\widetilde{U}_1} = [\widetilde{x}_1^R]_{ilpha}  ar{u}_i \widetilde{U}_1 e_lpha + 	ext{h.c.}$                                                                                                           |
| $R_2$             | $({f 3},{f 2},7/6)$          | 0                     | $\mathcal{L}_{R_2} = -[y_2^L]_{ilpha}  ar{u}_i R_2 \epsilon l_lpha + [y_2^R]_{ilpha}  ar{q}_i e_lpha R_2 + 	ext{h.c.}$                                                                                               |
| $\widetilde{R}_2$ | $({\bf 3},{\bf 2},1/6)$      | 0                     | $\mathcal{L}_{\widetilde{R}_2} = -[\widetilde{y}_2^L]_{i\alpha}  \bar{d}_i \widetilde{R}_2 \epsilon l_\alpha + [\widetilde{y}_2^R]_{i\alpha}  \bar{q}_i N_\alpha \widetilde{R}_2 + \text{h.c.}$                      |
| $V_2$             | $(\bar{3},2,5/6)$            | 1                     | $\mathcal{L}_{V_2} = [x_2^L]_{i\alpha}  \bar{d}_i^c V_2 \epsilon l_\alpha + [x_2^R]_{i\alpha}  \bar{q}_i^c \epsilon V_2 e_\alpha + \mathrm{h.c.}$                                                                    |
| $\widetilde{V}_2$ | $(\bar{3},2,-1/6)$           | 1                     | $\mathcal{L}_{\widetilde{V}_2} = [\widetilde{x}_2^L]_{i\alpha}  \bar{u}_i^c \widetilde{V}_2 \epsilon l_\alpha + [\widetilde{x}_2^R]_{i\alpha}  \bar{q}_i^c \epsilon \widetilde{V}_2 N_\alpha + \mathrm{h.c.}$        |
| $S_3$             | $(\bar{3},3,1/3)$            | 0                     | $\mathcal{L}_{S_3} = [y_3^L]_{i\alpha}  \bar{q}_i^c \epsilon(\tau^I  S_3^I) l_\alpha + \text{h.c.}$                                                                                                                  |
| $U_3$             | ( <b>3</b> , <b>3</b> , 2/3) | 1                     | $\mathcal{L}_{U_3} = [x_3^L]_{ilpha}  ar{q}_i (	au^I  igle _3^I) l_lpha + 	ext{h.c.}$                                                                                                                                |

$$[\mathcal{F}_{I,\,\text{Singular}}^{XY}(\hat{s},\hat{t})]_{ij\alpha\beta} = \sum_{a} \frac{v^2 \, [g_a^*]_{ij} [g_a^*]_{\alpha\beta}}{\hat{s} - m_a^2} + \sum_{b} \frac{v^2 \, [g_b^*]_{i\beta} [g_b^*]_{j\alpha}}{\hat{t} - m_b^2} - \sum_{c} \frac{v^2 \, [g_c^*]_{i\alpha} [g_c^*]_{j\beta}}{\hat{s} + \hat{t} + m_c^2} \qquad I \in \{S, V, T\}$$

$$a \in \{\gamma, Z, W, Z', W', \tilde{Z}, \Phi_{1,2}\} \qquad b \in \{U_1, \tilde{U}_1, R_2, \tilde{R}_2, U_3\} \qquad c \in \{S_1, \tilde{S}_1, V_2, \tilde{V}_2, S_3\}$$



Authors: Lukas Allwicher, Darius A. Faroughy, Florentin Jaffredo, Olcyr Sumensari, and Felix Wilsch References: arXiv:2207.10756, arXiv:2207.10714 Website: https://highpt.github.io HighPT is free software released under the terms of the MIT License. Version: 1.0.1



<<HighPT`

• We provide the complete Drell-Yan tail Likelihoods for New Physics.  $\mathcal{L}(\mathcal{F}_I^{XY})\,, \quad \mathcal{L}(\mathcal{C}_i)\,, \quad \mathcal{L}(g*)$ 

|                                                    |  | Process                    | Experiment     | Luminosity         |
|----------------------------------------------------|--|----------------------------|----------------|--------------------|
| Current functionalites:                            |  | $pp \rightarrow \tau \tau$ | ATLAS          | $139{ m fb}^{-1}$  |
| - All SMEFT operators dim = 6,8                    |  | $pp  ightarrow \mu \mu$    | $\mathbf{CMS}$ | $140{ m fb}^{-1}$  |
| Any lanta quark madiator                           |  | $pp \to ee$                | $\mathbf{CMS}$ | $137{ m fb}^{-1}$  |
| - Any leptoquark mediator                          |  | pp  ightarrow 	au  u       | ATLAS          | $139{ m fb}^{-1}$  |
| $m_{\rm LQ} \in \{1, 2, 3, 4, 5\}$ TeV             |  | $pp \to \mu\nu$            | ATLAS          | $139{ m fb}^{-1}$  |
|                                                    |  | $pp \to e\nu$              | ATLAS          | $139{ m fb}^{-1}$  |
| - Arbitrary flavor structures and CKM alignment    |  | $pp \to \tau \mu$          | CMS            | $138{ m fb}^{-1}$  |
| - Analytic cross-sections and per-bin event yields |  | $pp \to \tau e$            | $\mathbf{CMS}$ | $138{\rm fb}^{-1}$ |
| - Likelihoods exportable in Wcxf format            |  | $pp \rightarrow \mu e$     | CMS            | $138{\rm fb}^{-1}$ |

- Includes detector effects! (fast simulations)



[arXiv:1906.05609] [arXiv:2002.12223] CMS-PAS-EXO-19-019 CMS-PAS-EXO-19-014 ATLAS-CONF-2021-025

Heavy resonance searches

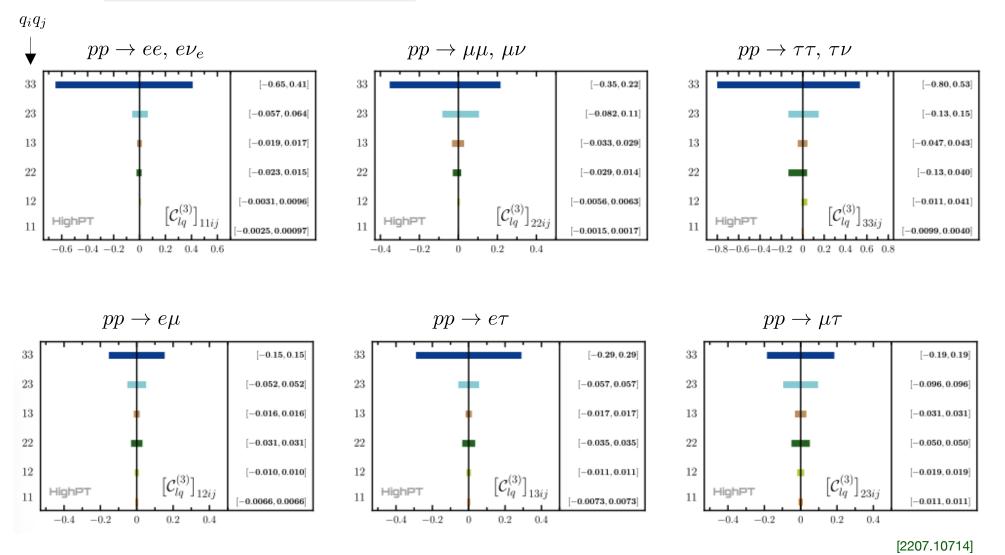


# Limits on Flavored SMEFT

• Single-parameter limits for dim=6 SMEFT with HighPT

 $q_i \bar{q}_j \to \ell_\alpha^\pm \ell_\beta^\mp \qquad q_i \bar{q}_j \to \ell_\alpha^\pm \nu_\beta$ 

 $[\mathcal{O}_{\ell q}^{(3)}]_{\alpha\beta ij} = (\bar{\ell}_{\alpha}\gamma^{\mu}\tau^{I}\ell_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})$ 



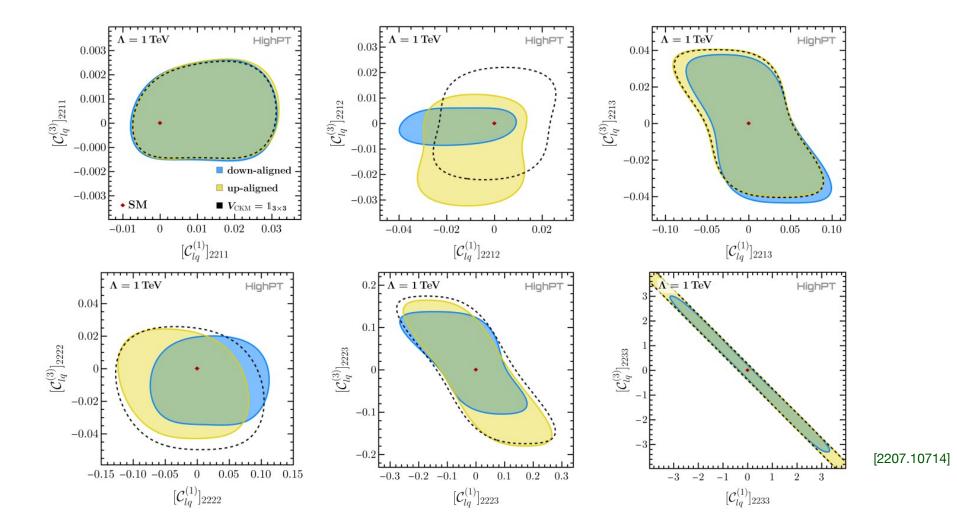


• Two-parameter fits with HighPT:

 $q_i \bar{q}_j \to \mu^+ \mu^- \quad u_i \bar{d}_j \to \mu^\pm \nu$ 

$$\begin{cases} [\mathcal{O}_{\ell q}^{(1)}]_{\alpha\beta ij} = (\bar{\ell}_{\alpha}\gamma^{\mu}\ell_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j}) \\ [\mathcal{O}_{\ell q}^{(3)}]_{\alpha\beta ij} = (\bar{\ell}_{\alpha}\gamma^{\mu}\tau^{I}\ell_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j}) \end{cases}$$

$$q = \begin{pmatrix} V_{
m CKM}^{\dagger} \cdot u_L \\ d_L \end{pmatrix}$$
 down-alignment  
 $q = \begin{pmatrix} u_L \\ V_{
m CKM} \cdot d_L \end{pmatrix}$  vs  
up-alignment





#### **SMEFT** truncation

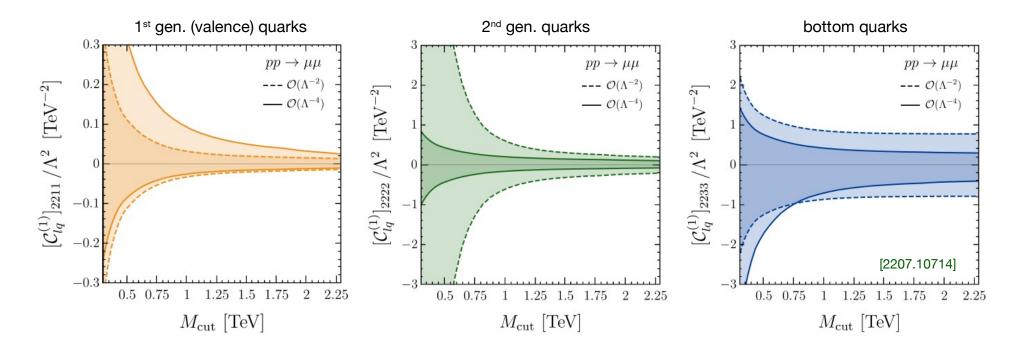
• Where do we truncate the EFT expansion? 
$$\mathrm{d}\sigma \sim |\mathcal{A}_{\mathrm{SM}}|^2 + \frac{1}{\Lambda^2} \sum_i \mathcal{C}_i^6 \mathcal{A}_i^6 \mathcal{A}_{\mathrm{SM}}^* + \frac{1}{\Lambda^4} \left( \sum_{ij} \mathcal{C}_i^6 \mathcal{C}_j^{6*} \mathcal{A}_i^6 \mathcal{A}_j^{6*} + \sum_i \mathcal{C}_i^8 \mathcal{A}_i^8 \mathcal{A}_{\mathrm{SM}}^* \right)$$

 $\mathcal{O}(\Lambda^{-4})$  effects are very important in the tails! Should not be neglected

Boughezal et al. [2106.05337] Allwicher et al. [2207.10714]

"Clipped limits": extract limits as a function of an upper-cut M<sub>cut</sub>

Contino et al.[1604.06444] Brivio et al. [2201.04974]



Clipped limits and dim=8 corrections can be easily extracted with HighPT



# Combined fit: Drell-Yan + RD(\*) + EWPT

• We focus on SMEFT ops:  $\mathcal{O}_{\ell q}^{(3)}, \; \mathcal{O}_{\ell equ}^{(1)}$ 

$$\mathcal{D}_{\ell equ}^{(1)} \,, \; \mathcal{O}_{\ell equ}^{(3)}$$

with correlated Wilson coefficients from the UV

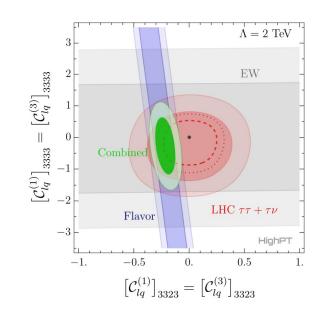
$$[\mathcal{C}_{\ell q}^{(1)}]_{3333} = [\mathcal{C}_{\ell q}^{(3)}]_{3333}$$
$$[\mathcal{C}_{\ell q}^{(1)}]_{3323} = [\mathcal{C}_{\ell q}^{(3)}]_{3323}$$

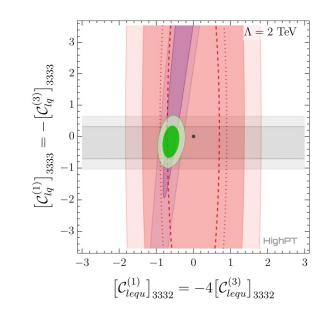
 $U_1^{\mu} \sim (\mathbf{3}, \mathbf{1}, 2/3)$ 

$$[\mathcal{C}_{\ell q}^{(1)}]_{3333} = -[\mathcal{C}_{\ell q}^{(3)}]_{3333}$$
$$[\mathcal{C}_{\ell e q u}^{(1)}]_{3332} = -4[\mathcal{C}_{\ell e q u}^{(3)}]_{3332}$$
$$S_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$$

• We fit to:

$$\begin{aligned} \mathbf{R}_{D^{(*)}} &= \frac{\mathcal{B}(B \to D(*)\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)} \\ pp &\to \tau^+\tau^- \\ pp &\to \tau^\pm\nu \\ W, Z - \text{poles} \end{aligned}$$





Complementarity: High- $p_T$  LHC  $\leftrightarrow$  Low- $p_T$  Flavor  $\leftrightarrow$  EWPT

# Outlook

• We showed that Drell-Yan tails at the LHC are powerful probes of BSM in semi-leptonic interactions with arbitrary flavor.

• High-p<sub>T</sub> tails provides information complementary to low-energy experiments.

• We introduced HighPT a mathematica package that provides the full flavor likelihood for high-pT Drell-Yan.

- SMEFT to order  $\mathcal{O}(\Lambda^{-4})$  including **dim=8 effects**
- Any Leptoquark model
- Future features for the HighPT code:
  - Include (some) Flavor and EWPT observables for fits
  - Include data from other Drell-Yan differential distributions, e.g. FB asymmetry.



https://highpt.github.io

# - Backup -

#### • Dimension-8 semi-leptonic operators:

Murphy [2005.00059]

| d=8                                                                 | $\psi^4 H^2$                                                                                                                           |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| $\mathcal{O}_{L^2Q^2H^2}^{(1)}$                                     | $(\bar{L}_{lpha}\gamma^{\mu}L_{eta})(\bar{Q}_{i}\gamma_{\mu}Q_{j})(H^{\dagger}H)$                                                      |
| $\mathcal{O}_{L^2 O^2 H^2}^{(2)}$                                   | $(\bar{L}_{\alpha}\gamma^{\mu}\tau^{I}L_{\beta})(\bar{Q}_{i}\gamma_{\mu}Q_{j})(H^{\dagger}\tau^{I}H)$                                  |
| $U_{L^2 O^2 H^2}$                                                   | $(\bar{L}_{\alpha}\gamma^{\mu}\tau^{I}L_{\beta})(\bar{Q}_{i}\gamma_{\mu}\tau^{I}Q_{j})(H^{\dagger}H)$                                  |
| $\mathcal{O}_{L^2 O^2 H^2}^{(4)}$                                   | $(\bar{L}_{\alpha}\gamma^{\mu}L_{\beta})(\bar{Q}_{i}\gamma_{\mu}\tau^{I}Q_{j})(H^{\dagger}\tau^{I}H)$                                  |
| $\mathcal{O}_{L^2 O^2 H^2}^{(5)}$                                   | $\epsilon^{IJK} (\bar{L}_{\alpha} \gamma^{\mu} \tau^{I} L_{\beta}) (\bar{Q}_{i} \gamma_{\mu} \tau^{J} Q_{j}) (H^{\dagger} \tau^{K} H)$ |
| $\mathcal{O}^{(1)}_{L^2 u^2 H^2}$                                   | $(\bar{L}_{\alpha}\gamma^{\mu}L_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}H)$                                                  |
| $\mathcal{O}_{L^2 u^2 H^2}^{(2)} \ \mathcal{O}_{L^2 u^2 H^2}^{(1)}$ | $(\bar{L}_{\alpha}\gamma^{\mu}\tau^{I}L_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{I}H)$                                  |
| $\mathcal{O}_{L^2 d^2 H^2}^{(1)} \\ \mathcal{O}^{(2)}$              | $(\bar{L}_{lpha}\gamma^{\mu}L_{eta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}H)$                                                      |
| $\mathcal{O}_{L^2 d^2 H^2}^{(2)}$                                   | $(\bar{L}_{lpha}\gamma^{\mu}\tau^{I}L_{eta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\tau^{I}H)$                                      |
| $\frac{\mathcal{O}_{L^2d^2H^2}}{\mathcal{O}_{Q^2e^2H^2}^{(1)}}$     | $(\bar{Q}_i\gamma^\mu Q_j)(\bar{e}_\alpha\gamma_\mu e_\beta)(H^\dagger H)$                                                             |
| $\mathcal{O}^{(2)}_{Q^2 e^2 H^2}$                                   | $(\bar{Q}_i\gamma^\mu\tau^I Q_j)(\bar{e}_\alpha\gamma_\mu e_\beta)(H^\dagger\tau^I H)$                                                 |
| $\mathcal{O}_{e^2u^2H^2}$                                           | $(\bar{e}_{\alpha}\gamma^{\mu}e_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}H)$                                                  |
| $\mathcal{O}_{e^2d^2H^2}$                                           | $(\bar{e}_{\alpha}\gamma^{\mu}e_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}H)$                                                  |

| d = 8                                                                          | $\psi^2 H^2 D^3$                                                                                            |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| $\mathcal{O}_{L^2 H^2 D^3}^{(1)}$                                              | $i(\bar{L}_{\alpha}\gamma^{\mu}D^{\nu}L_{\beta})(D_{(\mu}D_{\nu)}H)^{\dagger}H$                             |
| $\mathcal{O}_{l^{2}H^{2}D^{3}}^{(2)}$<br>$\mathcal{O}_{l^{2}H^{2}D^{3}}^{(3)}$ | $i(\bar{l}_{\alpha}\gamma^{\mu}D^{\nu}l_{\beta}) H^{\dagger}(D_{(\mu}D_{\nu)}H)$                            |
|                                                                                | $i(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}D^{\nu}l_{\beta})\left(D_{(\mu}D_{\nu)}H\right)^{\dagger}\tau^{I}H)$ |
| $\mathcal{O}_{L^2 H^2 D^3}^{(4)}$                                              | $i(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}D^{\nu}l_{\beta})H^{\dagger}\tau^{I}(D_{(\mu}D_{\nu)}H)$             |
| $\mathcal{O}_{e^{2}H^{2}D^{3}}^{(1)}$                                          | $i(\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})(D_{(\mu}D_{\nu)}H)^{\dagger}H)$                            |
| $\mathcal{O}_{e^2H^2D^3}^{(2)}$                                                | $i(\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})H^{\dagger}(D_{(\mu}D_{\nu)}H)$                             |
| $\mathcal{O}^{(1)}_{Q^2 H^2 D^3}$                                              | $i(\bar{Q}_i\gamma^{\mu}D^{\nu}Q_j)(D_{(\mu}D_{\nu)}H)^{\dagger}H$                                          |
| $\mathcal{O}^{(2)}_{Q^2 H^2 D^3}$                                              | $i(\bar{Q}_i\gamma^\mu D^\nu Q_j) H^\dagger(D_{(\mu}D_{\nu)}H)$                                             |
| $\mathcal{O}_{Q^2 H^2 D^3}^{(3)}$                                              | $i(\bar{Q}_i\gamma^{\mu}\tau^I D^{\nu}Q_j) \left(D_{(\mu}D_{\nu)}H\right)^{\dagger}\tau^I H$                |
| $\mathcal{O}^{(4)}_{Q^2 H^2 D^3}$                                              | $i(\bar{Q}_i\gamma^\mu\tau^I D^\nu Q_j)H^\dagger\tau^I(D_{(\mu}D_{\nu)}H)$                                  |
| $\mathcal{O}_{u^2 H^2 D^3}^{(1)}$                                              | $i(\bar{u}_i\gamma^\mu D^\nu u_j) (D_{(\mu}D_{\nu)}H)^\dagger H$                                            |
| $\frac{\mathcal{O}_{u^2H^2D^3}^{(2)}}{\mathcal{O}_{u^2H^2D^3}^{(1)}}$          | $i(\bar{u}_i\gamma^\mu D^\nu u_j) H^\dagger(D_{(\mu}D_{\nu)}H)$                                             |
| $\mathcal{O}_{d^{2}H^{2}D^{3}}^{(1)}$<br>$\mathcal{O}^{(2)}$                   | $i(\bar{d}_i\gamma^\mu D^\nu d_j) \left(D_{(\mu}D_{\nu)}H\right)^\dagger H$                                 |
| $\mathcal{O}^{(2)}_{d^2H^2D^3}$                                                | $i(\bar{d}_i\gamma^\mu D^\nu d_j) H^\dagger(D_{(\mu}D_{\nu)}H)$                                             |

| d=8                                                                                                                 | $\psi^4 D^2$                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| $\mathcal{O}_{L^2Q^2D^2}^{(1)}$                                                                                     | $D^{\nu}(\bar{L}_{\alpha}\gamma^{\mu}L_{\beta})D_{\nu}(\bar{Q}_{i}\gamma_{\mu}Q_{j})$                                                |
| $\mathcal{O}_{L^2 O^2 D^2}^{(2)}$                                                                                   | $(\bar{L}_{\alpha}\gamma^{\mu}\overleftrightarrow{D}^{\nu}L_{\beta})(\bar{Q}_{i}\gamma_{\mu}\overleftrightarrow{D}_{\nu}Q_{j})$      |
| $\mathcal{O}_{L^2Q^2D^2}^{(3)}$                                                                                     | $D^{\nu}(\bar{L}_{\alpha}\gamma^{\mu}\tau^{I}L_{\beta})D_{\nu}(\bar{Q}_{i}\gamma_{\mu}\tau^{I}Q_{j})$                                |
| ${\cal O}^{(4)}_{L^2Q^2D^2}$                                                                                        | $(\bar{L}_{\alpha}\gamma^{\mu}\overleftrightarrow{D}^{I\nu}L_{\beta})(\bar{Q}_{i}\gamma_{\mu}\overleftrightarrow{D}_{\nu}^{I}Q_{j})$ |
| $\mathcal{O}_{L^{2}u^{2}D^{2}}^{(1)} \\ \mathcal{O}_{L^{2}u^{2}D^{2}}^{(2)} \\ \mathcal{O}_{L^{2}u^{2}D^{2}}^{(2)}$ | $D^{ u}(\bar{L}_{lpha}\gamma^{\mu}L_{eta})D_{ u}(\bar{u}_{i}\gamma_{\mu}u_{j})$                                                      |
|                                                                                                                     | $(\bar{L}_{\alpha}\gamma^{\mu}\overleftrightarrow{D}^{\nu}L_{\beta})(\bar{u}_{i}\gamma_{\mu}\overleftrightarrow{D}_{\nu}u_{j})$      |
| $\mathcal{O}_{L^2 d^2 D^2}^{(1)} \ \mathcal{O}_{L^2 d^2 D^2}^{(2)}$                                                 | $D^{ u}(\bar{L}_{\alpha}\gamma^{\mu}L_{\beta})D_{ u}(\bar{d}_{i}\gamma_{\mu}d_{j})$                                                  |
| $\mathcal{O}_{L^2 d^2 D^2}^{(2)}$                                                                                   | $(\bar{L}_{\alpha}\gamma^{\mu}\overleftrightarrow{D}^{\nu}L_{\beta})(\bar{d}_{i}\gamma_{\mu}\overleftrightarrow{D}_{\nu}d_{j})$      |
| $\frac{\mathcal{O}_{L^2 d^2 D^2}^{(2)}}{\mathcal{O}_{Q^2 e^2 D^2}^{(1)}}$                                           | $D^{ u}(ar{Q}_i\gamma^{\mu}Q_j)D_{ u}(ar{e}_{lpha}\gamma_{\mu}e_{eta})$                                                              |
| $\mathcal{O}^{(2)}_{Q^2 e^2 D^2}$                                                                                   | $(\bar{Q}_i\gamma^\mu\overleftrightarrow{D}^\nu Q_j)(\bar{e}_\alpha\gamma_\mu\overleftrightarrow{D}_\nu e_\beta)$                    |
| $\mathcal{O}_{e^{2}u^{2}D^{2}}^{(1)} \mathcal{O}_{e^{2}u^{2}D^{2}}^{(2)}$                                           | $D^{\nu}(\bar{e}_{\alpha}\gamma^{\mu}e_{\beta})D_{\nu}(\bar{u}_{i}\gamma_{\mu}u_{j})$                                                |
| $-e^{2}u^{2}D^{2}$                                                                                                  | $(\bar{e}_{\alpha}\gamma^{\mu}\overleftrightarrow{D}^{\nu}e_{\beta})(\bar{u}_{i}\gamma_{\mu}\overleftrightarrow{D}_{\nu}u_{j})$      |
| $\mathcal{O}_{e^2d^2D^2}^{(1)} \ \mathcal{O}_{e^2d^2D^2}^{(2)}$                                                     | $D^{\nu}(\bar{e}_{\alpha}\gamma^{\mu}e_{\beta})D_{\nu}(\bar{d}_{i}\gamma_{\mu}d_{j})$                                                |
| $\mathcal{O}^{(2)}_{e^2 d^2 D^2}$                                                                                   | $(\bar{e}_{\alpha}\gamma^{\mu}\overleftrightarrow{D}^{\nu}e_{\beta})(\bar{d}_{i}\gamma_{\mu}\overleftrightarrow{D}_{\nu}d_{j})$      |

 $q_i q_j \to \ell_\alpha \ell_\beta$ 

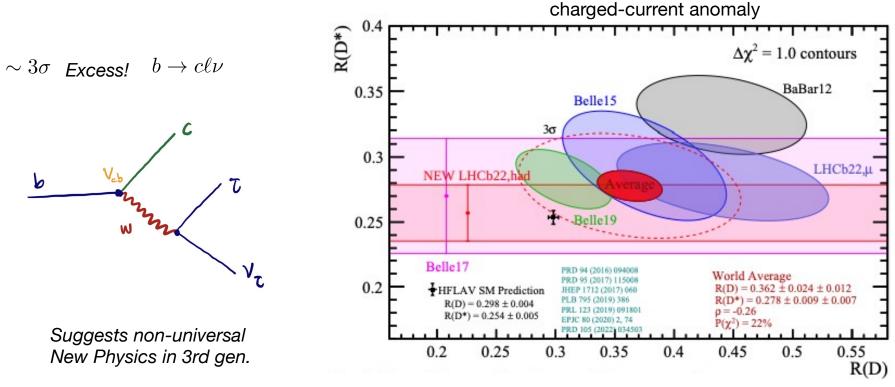
~ 300 parameters (d=8)

#### A decade of B-anomalies

• Lepton Flavor Universality (LFU) in the SM: masses are the only source of LFU violation

$$\begin{array}{ll} \mbox{LFU ratios:} & R_{D^{(*)}} = \frac{\mathrm{Br}(B \to D^{(*)} \, \tau \bar{\nu})}{\mathrm{Br}(B \to D^{(*)} \, \ell \bar{\nu})} \Big|_{\ell = e, \mu} & R_{K^{(*)}} = \frac{\mathrm{Br}(B \to K^{(*)} \, \mu \mu)}{\mathrm{Br}(B \to K^{(*)} \, e e)} & \\ & b \to c \ell \nu & b \to s \ell \ell \end{array}$$

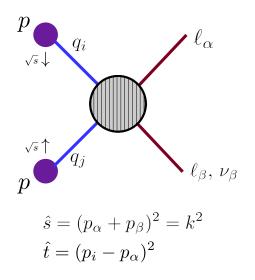
• Evidence of LFU Violation in semi-leptonic B-decays



[LHCb-PAPER-2022-052] [2302.02886]

# **Drell-Yan Tails Beyond the SM**

• General amplitude decomposition of  $2 \rightarrow 2$  semi-leptonic scattering in terms of Form Factors:



• (Neutral) Drell-Yan differential cross-section:

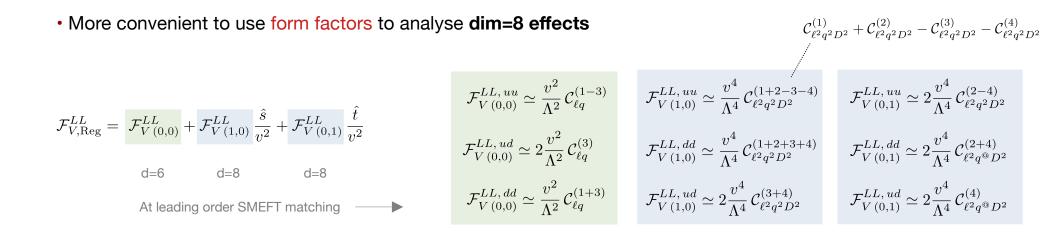
$$d\hat{\sigma}(\bar{q}_{i}q_{j} \to \ell_{\alpha}^{-}\ell_{\beta}^{+}) = \frac{d\hat{t}}{48\pi v^{4}} \sum_{XY,IJ} [\mathcal{F}_{I}^{XY\dagger}]_{ij\alpha\beta} \cdot M_{IJ}^{XY} \cdot [\mathcal{F}_{J}^{XY}]_{ij\alpha\beta} \qquad I, J \in \{S, V, T, D_{\ell}, D_{q}\}$$

$$\sigma_{B}(pp \to \ell_{\alpha}^{-}\ell_{\beta}^{+}) = \frac{1}{48\pi v^{2}} \sum_{XY,IJ} \sum_{ij} \int_{m_{\ell\ell_{0}}^{2}}^{m_{\ell\ell_{1}}^{2}} \frac{d\hat{s}}{s} \int_{-\hat{s}}^{0} \frac{d\hat{t}}{v^{2}} \mathcal{L}_{ij} [\mathcal{F}_{I}^{XY\dagger}]_{\alpha\beta ij} \cdot M_{IJ}^{XY} \cdot [\mathcal{F}_{J}^{XY}]_{\alpha\beta ij} \qquad B = [m_{\ell\ell_{0}}^{2}, m_{\ell\ell_{1}}^{2}]$$

Similar expressions for Charged Drell-Yan proc.

### **Dim=8 corrections**

| d=8                                                                         | $\psi^4 D^2$                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathcal{O}_{l^{2}q^{2}D^{2}}^{(1)}$                                       | $D^{ u}(\bar{l}_{lpha}\gamma^{\mu}l_{eta})D_{ u}(\bar{q}_{i}\gamma_{\mu}q_{j})$                               | ( <b>?</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\mathcal{O}_{l^{2}q^{2}D^{2}}^{(2)} \ \mathcal{O}_{l^{2}q^{2}D^{2}}^{(3)}$ | $(ar{l}_lpha \gamma^\mu \overleftarrow{D}^ u l_eta) (ar{q}_i \gamma_\mu \overleftarrow{D}_ u q_j)$            | $\mathrm{d}\sigma ~\sim ~  \mathcal{A}_{\mathrm{SM}} ^2 + \frac{1}{\Lambda^2} \sum_{i} \mathcal{C}_i^6 \mathcal{A}_i^6 \mathcal{A}_{\mathrm{SM}}^* + \frac{1}{\Lambda^4} \left( \sum_{i} \mathcal{C}_i^6 \mathcal{C}_j^{6*} \mathcal{A}_i^6 \mathcal{A}_j^{6*} + \sum_{i} \mathcal{C}_i^8 \mathcal{A}_i^8 \mathcal{A}_{\mathrm{SM}}^* \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\mathcal{O}^{(3)}_{l^2q^2D^2}$                                             | $D^ u(ar l_lpha\gamma^\mu	au^I l_eta) D_ u(ar q_i\gamma_\mu	au^I q_j)$                                        | $ \left( \sum_{i} i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + i + j + j$ |
| $\mathcal{O}_{l^2q^2D^2}^{(4)}$                                             | $(ar{l}_lpha\gamma^\mu\overleftrightarrow{D}^{I u}l_eta)(ar{q}_i\gamma_\mu\overleftrightarrow{D}^{I}_ u q_j)$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



• It is not possible to study dim=8 effects without introducing some amount of UV bias!...

UV completions correlate operators at all orders in the SMEFT expansion

• We set limits on  $\mathcal{F}_{V(0,0)}^{LL,qq'}$  assuming 3 scenarios:

$$\mathcal{F}_{V,\mathrm{Reg}}^{LL} = \ \mathcal{F}_{V\,(0,0)}^{LL} + \mathcal{F}_{V\,(1,0)}^{LL} \, rac{\hat{s}}{v^2} + \mathcal{F}_{V\,(0,1)}^{LL} \, rac{\hat{t}}{v^2}$$

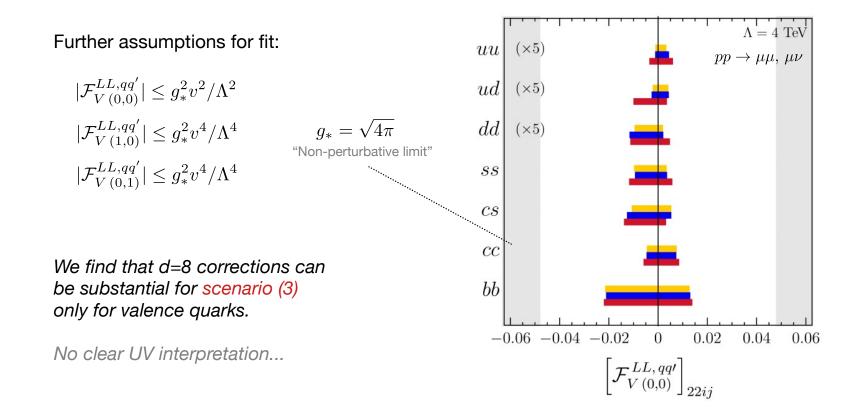
(1) Neglecing all dim=8 corrections (benchmark)

(2) Maximal correlation between dim=6 and dim=8 form factors:

 $\begin{cases} \mathcal{F}_{V(1,0)}^{LL,qq'} = \frac{v^2}{\Lambda^2} \, \mathcal{F}_{V(0,0)}^{LL,qq'} \\ \\ \mathcal{F}_{V(0,1)}^{LL,qq'} = 0 \end{cases}$ 

Arises when integrating out vector-triplet in UV

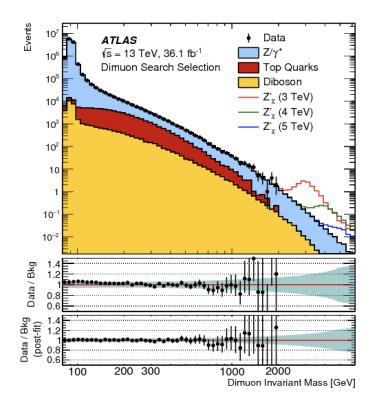
(3) Uncorrelated form factors. We marginalize over dim=8  $\mathcal{F}_{V(1,0)}^{LL,qq'}, \mathcal{F}_{V(0,1)}^{LL,qq'}$ 

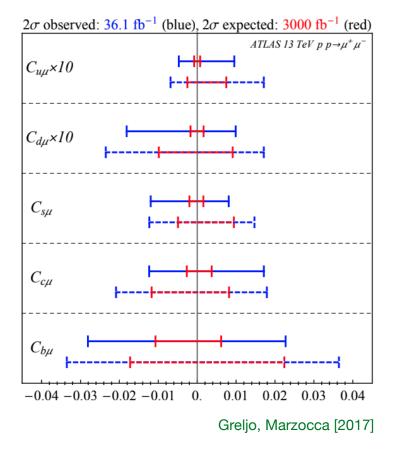


#### **Dimuon Tails**

$$\mathscr{L}^{\text{eff}} \supset \frac{\mathbf{C}_{ij}^{U\mu}}{v^2} (\bar{u}_L^i \gamma_\mu u_L^j) (\bar{\mu}_L \gamma^\mu \mu_L) + \frac{\mathbf{C}_{ij}^{D\mu}}{v^2} (\bar{d}_L^i \gamma_\mu d_L^j) (\bar{\mu}_L \gamma^\mu \mu_L) \qquad \mathbf{C}_{ij}^{D\mu} = \begin{pmatrix} C_{d\mu} & 0 & 0\\ 0 & C_{s\mu} & C_{bs\mu}^*\\ 0 & C_{bs\mu} & C_{b\mu} \end{pmatrix}$$

Recast dilepon resonance searches





 $\Lambda$ (heavy flavor) > 1.5 TeV  $\Lambda$ (valence) > 8 TeV

#### Combined fit: Drell-Yan + RD(\*) + EWPT

• We focus on NP in RD(\*):

$$\mathcal{O}_{\ell q}^{(3)}, \; \mathcal{O}_{\ell e q u}^{(1)}, \; \mathcal{O}_{\ell e d q}, \; \mathcal{O}_{\ell e q u}^{(3)}$$

with correlated Wilson coefficients from the UV

 $U_1^{\mu} \sim (\mathbf{3}, \mathbf{1}, 2/3)$ 

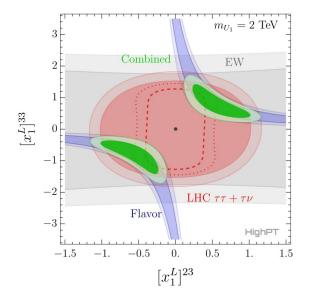
 $[\mathcal{C}_{\ell q}^{(1)}]_{3333} = [\mathcal{C}_{\ell q}^{(3)}]_{3333}$  $[\mathcal{C}_{\ell q}^{(1)}]_{3323} = [\mathcal{C}_{\ell q}^{(3)}]_{3323}$ 

$$S_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$$

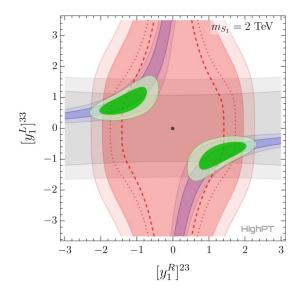
$$[\mathcal{C}_{\ell q}^{(1)}]_{3333} = -[\mathcal{C}_{\ell q}^{(3)}]_{3333}$$
$$[\mathcal{C}_{\ell e q u}^{(1)}]_{3332} = -4[\mathcal{C}_{\ell e q u}^{(3)}]_{3332}$$

$$R_{2} \sim (\mathbf{3}, \mathbf{2}, 7/6)$$
$$[\mathcal{C}_{\ell q}^{(1)}]_{3333} = -[\mathcal{C}_{\ell q}^{(3)}]_{3333}$$
$$[\mathcal{C}_{\ell e q u}^{(1)}]_{3332} = -4[\mathcal{C}_{\ell e q u}^{(3)}]_{3332}$$

 $\mathcal{L}_{U_1} = [x_1^L]_{ilpha} \, ar{q}_i 
ot\!\!\!/_1 l_lpha$ 



$$\mathcal{L}_{S_1} = [y_1^L]_{i\alpha} S_1 \bar{q}_i^c \epsilon l_\alpha + [y_1^R]_{i\alpha} S_1 \bar{u}_i^c e_\alpha$$



 $\mathcal{L}_{R_2} = -[y_2^L]_{i\alpha} \,\bar{u}_i R_2 \epsilon l_\alpha + [y_2^R]_{i\alpha} \,\bar{q}_i e_\alpha R_2$ 

