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QUANTUM GRAVITY

—> FLUCTUATIONS IN SPACETIME 
OLD VIEW: VISIBLE ONLY AT ULTRASHORT DISTANCES

lp ⇠ 10�35 m ⇠ 10�43 s

Quantum gravity     
=>  

 fluctuations in  spacetime

Old view:     
•  visible at ultra short distance           (unobservable)

 New view:     
• quantum gravity effects are “non-local” 
• visible at large distances         
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Planck length = 1.6⇥ 10�35m

=>  quantum gravity is observable



BROWNIAN NOISE
➤ UV Effects Can be Transmuted to the Infrared
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BROWNIAN NOISE
➤ UV Effects Can be Transmuted to the Infrared
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Diffusion is simply “Random walk” or “Root N” statistics
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QUANTUM GRAVITY

—> FLUCTUATIONS IN SPACETIME 
NEW VIEW: NON-LOCALITY AND ENTANGLEMENT PLAY AN 
IMPORTANT ROLE IN QG 
EXAMPLE: PHYSICS AT BLACK HOLE HORIZONS

Quantum gravity     
=>  

 fluctuations in  spacetime

Old view:     
•  visible at ultra short distance           (unobservable)

 New view:     
• quantum gravity effects are “non-local” 
• visible at large distances         
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Planck length = 1.6⇥ 10�35m

=>  quantum gravity is observable



PHYSICS AT THE HORIZON
➤ Physics at horizons enters front and 

center into holography and QG 

➤ Some naive EFT/ perturbative 
reasoning breaks down at the 
horizon 

➤ UV / IR mixing seems important 

➤ EFT vastly overcounts degrees-of-
freedom of a spacetime volume 
bounded by surface of area A 

➤ Entanglement between these degrees 
of freedom — inside and outside 
horizon — seems to be important

 Entropy of a Black Hole 
= 

Area of its Horizon  

 Entropy  measures  Information 
                   it counts the number of bits                   

Bekenstein Hawking

S =
Area

4`2p

S =
Area

4`2p



THE QUANTUM WIDTH OF A (BH) HORIZON
➤ Degrees-of-freedom (“pixels”) can fluctuate
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Figure 2: The central fluctuation (+) happens to be surrounded by other fluctuations (+) of the
same sign. Fluctuations of the opposite sign (-) may occur farther away, but the central fluctuation
will not feel their influence on a timescale L.
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Figure 3: A shell of fluctuations (+) around the black hole. Since each fluctuation is of size L, a
given fluctuation cannot detect the others on a timescale less than L.

fluctuations in the horizon location. In other words, it is clear that the largest effect comes

from changes in the shape of the horizon as opposed to just the overall size.

How then shall we estimate this more localized effect on the horizon? Consider a

positive energy fluctuation of length scale L at a corresponding separation from the classical

horizon. If this induces a bulge on the horizon which is large enough to capture the

fluctuation itself, then it is clear that this must occur on a timescale5 L. Note that this

is also the natural lifetime of the fluctuation. Consider now the center of the fluctuation.

On a timescale L the center can receive no information from farther away than L. As a

result, it cannot know whether it is indeed part of a homogeneous spherical shell of such

fluctuations, or whether it is merely surrounded by an additional layer or so of similar

fluctuations6 (see figure 2). Thus, under reasonably common conditions, we should get the

right answer (as to whether the horizon bulges outward and engulfs our fluctuation) by

supposing that the black hole is in fact surrounded by a spherical shell of such fluctuations

and determining whether this shell would add enough mass to the black hole to enlarge

the horizon beyond the location of the fluctuations. Note that the shell has thickness L

(see figure 3); luckily, the calculation is just as easy for thick shells as for thin.

Let us consider a general spherically symmetric static metric of the form

ds2 = −gtt(r)dt
2 + grr(r)dr

2 + r2dΩ2
d−2, (3.1)

where as usual dΩ2
d−2 is the metric on the unit (d − 2)-sphere. We take gtt to have a

first-order zero at r = R, representing the non-degenerate black hole horizon.

In a sufficiently small region close to the horizon, we may approximate the metric in

the r, t directions by the standard Rindler metric:
5Say, as measured by freely falling observers initially at rest with respect to the black hole. Since we

are primarily concerned with the perturbative regime, we may use the metric of the original Black Hole to

compute times to leading order.
6It may just barely be able to tell whether the neighboring fluctuations have the same sign, but such a

clumping will occur a frequency which is not parametrically small, and thus is large enough for our purposes.

– 6 –

L/4

L

Figure 1: Two orthogonal low energy modes near a horizon. The larger has proper size ∼ L while
the smaller is ∼ L/4. Both have energy ∼ TH .

direction, it is useful to take each surface (which has area A) and divide it into A/L2 cells

of size L2.

In fact, a standard calculation using tortoise (r∗) coordinates shows that a careful

choice of wavepacket shape can result in arbitrarily low energies, say εTH for ε " 1, within

a proper distance L of the horizon. However, such modes cannot be localized as well on

the sphere, so that there are only λA/L2 of them and they contribute only O(1) changes

in coefficients.

Finally, note that in the Rindler approximation a given mode is transformed into the

next mode closer to the horizon by scaling it toward the bifurcation surface (see figure 1

again). The relevant measure in the radial direction is therefore scale invariant and must be

of order dL/L. (This result also follows from the logarithmic relation between the tortoise

coordinate (r∗) and proper distance [15].) Thus, the total number of modes between L

and L+ dL is of order A
L3 dL. Integrating the total contribution down to some ultraviolet

cutoff LUV yields a total contribution of order A/L2
UV . Each mode with energy ∼< TH

contributes a few bits of entropy, while modes with higher energy do not contribute. This

then is the origin of the observation [9] that a Planck scale cutoff yields an entropy of order

the Bekenstein-Hawking entropy of the black hole itself. It can also be mapped (see e.g.

[10, 11]) to the corresponding result [12] for entanglement entropy.

3. Estimating the width

The proper interpretation of the thermal atmosphere’s entropy is clearly an important issue

in black hole thermodynamics. For example, in the most naive interpretation one might

expect this to be a next-order correction to the Bekenstein-Hawking entropy SBH . Unfor-

tunately, with a Planck scale cut-off it is of comparable size to the “zero order” contribution

SBH . One may also try to cancel this entropy with a renormalization effect (though this

creates puzzles when various objects are lowered toward the black hole horizon [8]), or to

interpret the entropy of the thermal atmosphere as some sort of “dual” description of the

Bekenstein-Hawking entropy itself [9, 12]. Unfortunately, the latter approach suffers from

the well-known “species problem” (i.e., it appears to depend on the number of propagating

fields near the black hole horizon) and other concerns discussed in [8].

When the issue is phrased in terms of the near horizon modes, Sorkin’s potential

resolution suggests itself immediately. The presence of an extra particle with fixed energy

– 4 –

Marolf 2003
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In any number of dimensions:



HORIZONS
➤ An Experimental measurement defines a horizon

Black Hole Horizon Flat Space HorizonCosmological Horizon



HORIZONS AND EXPERIMENTS
➤ An experimental 

measurement defines a 
horizon 

➤ Consider light beams of 
an interferometer 

➤ Traces out a causal diamond

2

Length fluctuations with Planckian white noise.

In this paper we consider a toy experimental set-up,
shown in Fig. 1, in which the arm length L of an
interferometer is measured after a single light crossing.
In this idealized scenario the length fluctuations �L due
to quantum fluctuations in the metric is given by

�L(t) =
1

2

Z L

0
dz h(t+z�L) (1)

where h ⌘ hzz is the metric component along the light
beam propagation (see e.g. [15]). The magnitude of these
length fluctuations is normally expressed in terms of the
power spectral density (PSD)

S(!, t) =

Z 1

�1
d⌧

⌧
�L(t)

L

�L(t � ⌧)

L

�
e�i!⌧ . (2)

Let us first consider a simple model with a white noise
signal of Planckian amplitude

⌦
h(t+z1�L)h(t+z2�L�⌧)

↵
= Clp�(⌧ +z1�z2), (3)

where lp =
p

8⇡GN . This leads to a PSD of the form

S(!) =
Clp
4

sin2 !L

!2L2
. (4)

In this simple model the length fluctuations h�L2i obey
⌧

�L2(t)

L2

�
=

1

2⇡

Z 1

�1
d! S(!) =

Clp
8L

, (5)

and thus grow linearly with L [8–12]. This signal could
in principle be observable, since the peak sensitivity for
gravitational wave interferometers is right around the
Planck scale: S(!, t) . lp. Over the next sections our
goal will be to show how some of the generic behavior in
Eqs. 4, 5 can arise from a holographic model, motivat-
ing the size of the constant C, with crucial observational
e↵ects arising from angular correlations. In addition, in
experiments like LIGO and Virgo a typical photon tra-
verses the interferometer arm multiple times before being
measured. In this paper we continue to focus on our sim-
ple set up and defer the detailed discussion of multiple
crossings to future work.

Holographic Scenario and Basic Postulates.

Our aim in the following is to derive a result similar to
Eq. 5 from a holographic scenario, in which the holo-
graphic surface is fixed by the light path of a photon, as
depicted in Fig. 1. In order to clearly delineate between
theoretical input and observational consequences, we will
state here our three basic postulates:

1. Statistical independence of small scale fluctuations.

We postulate that the length fluctuation �L can be
obtained by subdividing the interferometer arm in
segments and summing over the statistically inde-
pendent length fluctuations of each segment. This
postulate is equivalent to the Ansatz in Eq. 3 and
implies that length fluctuations, �L2, accumulate
linearly with distance, as shown in Eq. 5.
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time
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laser

FIG. 1. The interferometer together with the spacetime di-
agram for a single crossing of a photon in the signal beam.
The interferometer at time t is contained in a causal diamond
centered at the beam splitter and with the photon path on its
null boundary.

2. Holographic principle in flat spacetime. We postu-
late that the holographic principle also applies to
Minkowski spacetime. It states that the maximal
entropy carried by the microscopic degrees of free-
dom associated with a finite region of flat spacetime
bounded by null geodesics is S = A/4GN . This
bound is saturated for a region of space whose null
boundary coincides with a horizon.

3. Universality of metric fluctuations at horizons. We
postulate that metric fluctuations near null surfaces
associated with a horizon are universal and follow
from the entropy and temperature using standard
thermodynamic considerations. This postulate im-
plies that metric fluctuations near a Rindler-type
horizon are identical to those near a black hole hori-
zon with the same temperature and entropy.

The first postulate implies that the ultraviolet Planck-
ian fluctuations accumulate in the longitudinal direction
along the interferometer arm. The second and third pos-
tulate allow us to determine the size and transversal
correlations of the length fluctuations from the metric
perturbations near the holographic surface surrounding
the interferometer. To be able to apply the third pos-
tulate we will identify the boundary of the holographic
surface with the event horizon of a (family of) Rindler
observer(s). By following a reasoning similar to what
has been considered in the context of black holes (see
Ref. [16]) we show that energy fluctuations of the holo-
graphic degrees of freedom lead to an uncertainty in the
position of the horizon. We subsequently translate this

FIG. 4. The horizon fluctuations are indicated by red (for positive) and blue (for negative) pixels.

The horizon fluctuations appear coherent in the transversal direction

rise to fluctuations in the Newtonian potential Φ. The fluctuations of the Newton potential

Φ simply shift the function f(R) via

f(R) = (1− R

L
+ 2Φ) (48)

such that we have the relation

2Φ = huhv =
δL2

4L2
. (49)

[KZ: This discussion should be made to dovetail with the discussion in the

previous section. We ultimately want to de-emphasize the temperature and em-

phasize instead the entropy.] Following the general logic of the holographic principle we

imagine that on the horizon we have one degree of freedom on every Planckian pixel. Hence,

we postulate that the total number of holographic degrees of freedom may be identified with

the entropy S associated with the horizon of spherical Rindler space

S =
A

4G
=

8π2L2

ℓ2p
. (50)

The energy associated with each degree of freedom can fluctuate by an amount of the

order or T =
1

4πL
. If all pixels would carry a positive energy of this amount, one would

create a black hole with size L. In Minkowski space, however, the average energy vanishes.

Nevertheless, there can be fluctuations of the vacuum energy inside this causal diamond.

21

E. Verlinde, KZ 1911.02018
E. Verlinde, KZ 1902.08207



WHAT LENGTH FLUCTUATION CAN BE MEASURED?
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Modern Interferometer Set-Up:

Parametrically the same as the black hole uncertainty



BLACK HOLE - (EMPTY!) CAUSAL DIAMOND DICTIONARY

➤ Horizon 
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➤ Entropy
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➤ Partition Function 

➤ Entanglement Entropy

Black Hole Causal Diamond
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T ⇠ 1/L

level of the fluctuations. This implies in particular that Φ fluctuates and that as a result

the location of the horizon exhibits vacuum fluctuations. Our reasoning in this section is

inspired by [11] and will closely follow the discussion in [1].

A. The relation between the mass M and the modular hamiltonian K

The aim of this subsection is to show that the mass M , as defined by Eq. 24, can, as a

quantum operator, be identified with

M =
1

2πL

$
K −

"
K
#%

. (56)

Here the pre-factor 1/2πL represents the Hawking temperature at the Rindler horizon. In

other words, the mass operator M is, up to an overall factor given by the temperature,

equal to difference of the modular Hamiltonian K and its vacuum expectation value 〈K〉.

A crucial ingredient in the derivation of this relation is the fact that the mass M satisfies

the first law of black hole thermodynamics

dM = TdS. (57)

Our proof of Eq. 56 amounts to showing that both sides of this equation obey the same 1st

law of black hole thermodynamics.

First, let us derive that the mass M , as defined by Eq. 23 and Eq. 24, indeed obeys the

first law given in Eq. 57. For this we use the fact he location of the horizon is determined

by the equation f(rh,M) = 0 for all values of M . Hence, the variation drh of the horizon

location and the mass variation dM are related by

df(rh,M) = f ′(rh,M)drh +
∂f(rh,M)

∂M
dM = 0. (58)

From the expressions in Eq. 23 and Eq. 24 we learn that

∂f(rh,M)

∂M
= − 16πG

(d− 1)Vd−1r
d−2
h

, (59)

It is now a simple exercise to show, with the help of Eq. 40 and by varying the area-

entropy relation in Eq. 19, that the variation dM indeed satisfies the 1st law of black hole

thermodynamics given in Eq. 57.

Our next goal is to show that, the r.h.s. of Eq. 56 obeys the same first law of black hole

entropy, when K is defined by Eq. 8. We will prove the relation Eq. ?? at the level of

16
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S = hKi = A

4G
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based on fluctuations in the modular Hamiltonian K

K =

Z

B
Tµ⌫⇣

µ
KdB

⌫
, (4)

where B is some spatial region with a stress tensor Tµ⌫ ,

dB
⌫ is the volume element of B (with dB

⌫ pointing in

the time direction), and ⇣
µ
K is the conformal Killing vec-

tor of the boost symmetry of ⌃, the entangling surface

between B and its complement B̄ [2, 8]. One can map B

to Rindler space, so ⌃ is also a Rindler horizon. In the

context of AdS/CFT, where Tµ⌫ is the stress tensor of the

boundary CFT, both the vacuum expectation value and

the fluctuations of the modular Hamiltonian are known

to obey an area law in vacuum [2, 9, 10]

hKi = h�K
2i =

A(⌃)

4G
, (5)

where A(⌃) is the area of ⌃. One tempting interpretation

of this relation is that hKi ⌘ N counts the number of

gravitational bits, or pixels, in the system, which is fur-

ther motivated by the fact that the entanglement entropy

Sent = hKi is known to hold in a CFT. The fluctuations

of those N bits then satisfy “root-N” statistics:

|�K|
hKi =

1p
N

, (6)

where |�K| =
p

h�K2i represents the amplitude of the

modular fluctuation.

While the precise relation hKi = h�K
2i is demon-

strated only in the context of AdS/CFT, one can place

a Randall-Sundrum brane in the (5-d) bulk of AdS, in-

ducing gravity on the (flat 4-d) RS brane, and show that

Eq. (5) holds on the 4-d brane [3]. The measuring appara-

tus can then be placed on the flat 4-d brane. Further, as

shown in [3, 11, 12], gravity is approximately conformal

near the horizon. For an interferometer, the light beams

are probing the near-horizon geometry of the spherical

entangling surface ⌃ bounding it (shown in Fig. 1), so

Ref. [3] argued that the correlator of stress tensor takes

the same form as any CFT. Thus, h�K
2i follows Eq. (5),

i.e.,

h�K
2i ⇠

Z
d
2yd

2y0 dr dr
0
r r

0

((r � r0)2 + (y � y0)2)4

⇠ A

Z
dr dr

0
r r

0

(r � r0)6
⇠ A

�2
⇠ A

l2p

, (7)

where y denotes the transverse directions (correspond-

ing to the coordinates on ⌃), and G ⇠ �
2 corresponds

to a UV cut-o↵ in the theory at a distance scale � ⇠ lp.

In our case, r � r
0 ⇠ � corresponds to the distance to

the (unperturbed) spherical entangling surface ⌃ in our

setup shown in Fig. 1. A similar relation holds for hKi.
More generally, as found in [13], an area law for entan-

glement entropy does not hold only for a CFT but also

any massless scalar QFT, which also motivates the scalar

model of geoentropic fluctuations in [4] and this work.

The idea of Ref. [4] was thus to model the gravitational

e↵ects of modular fluctuations with a massless scalar

field, dubbed a “pixellon.” Since pixellons are bosonic

scalars, their creation and annihilation operators (a, a
†)

satisfy the usual commutation relation

⇥
ap1 , a

†
p2

⇤
= (2⇡)3�(3)(p1 � p2) . (8)

We are interested in modeling the impact of the (fluctu-

ating) e↵ective stress tensor in Eq. (13). We will do this

by allowing for a non-zero occupation number �pix(p),

Tr
�
⇢pixa

†
p1

ap2

�
= (2⇡)3�pix(p1)�

(3)(p1 � p2) (9)

such that

Tr
�
⇢pix{ap1 , a

†
p2

}
�

= (2⇡)3 [1 + 2�pix(p1)] �
(3)(p1�p2) .

(10)

The occupation number should be consistent with the

modular energy fluctuation, Eq. (6), as we will check ex-

plicitly at the end of this section.

The pixellon couples to the metric and sources the

stress tensor at second order in perturbations. In gen-

eral, we can consider a metric of the form

gµ⌫ = ⌘µ⌫ + ✏hµ⌫ + ✏
2
Hµ⌫ + ... , (11)

where ✏ is a dimensionless parameter that denotes the or-

der in perturbation theory. The vacuum Einstein Equa-

tion (EE) is, parametrically [14],

Gµ⌫ = ✏
⇥
r2

h
⇤
µ⌫

+✏
2
⇣⇥

r2
H
⇤
µ⌫

� l
2
pTµ⌫

⌘
+... = 0 , (12)

where the precise form of the equations of motion (e.g.,

numerical prefactors in the time and spatial derivatives)

will depend on the precise form of the metric that we

consider below, and where the e↵ective stress tensor is
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Figure 1: The interferometer together with the spacetime diagram for
a single crossing of a photon in the signal beam. The interferometer
at time t is contained in a causal diamond centered at the beam
splitter and with the photon path on its null boundary.

only three coordinates, one longitudinal null direction and
two transversal directions, corresponding to the outside
boundary of the causal diamond in Fig. 1,
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We first consider an Ansatz corresponding to uncorrelated
white noise in those three dimensions:

⌦
h(k1)h(k2)

↵
= (2⇡)3�3(k1 + k2)Cl3p. (7)

This power spectrum implements the principle of statisti-
cal independence both in the longitudinal as well as the
transversal directions. This can be seen directly by com-
puting the PSD and RMS length fluctuations:
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In the limit �xT ! 0, we recover a signal of an amplitude
that is in principle within the observable range and is con-
sistent with Eqs. 4-5. However, for a realistic macroscopic
interferometer, with the beam size centimeters across such
that �xT /lp�1, this signature would be unobservable.

Let us consider an alternative Ansatz for the metric
fluctuations in which the transversal directions are treated
di↵erently:

⌦
h(k1)h(k2)

↵
= (2⇡)3�3(k1 + k2)

Clp
(k2

T + k2
IR)

, (9)

where kIR acts as a regulator. Then Eq. (8), in the limit
that kIR�xT ⌧ 1, becomes
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Already this result shows important features that the
underlying theory must give, notably that the longitudi-
nal and transverse directions appear on a di↵erent footing.
The metric fluctuation in the transverse direction must be
correlated, while the metric fluctuations in the longitudi-
nal direction accumulate, as in a random walk, and are
transmuted to a low-energy, long-distance signature. We
will show over the next sections how these features arise
naturally from energy fluctuations on a holographic sur-
face.

5. From Minkowski to Schwarzschild-like Metric

The central part of our argument involves utilizing
a correspondence between any horizon and a black hole
horizon. To show concretely how this applies to the case
at hand, we make two metric transformations, which are
described below. First we define light cone coordinates
u = r + t and v = r � t so that metric becomes

ds2 = dudv + dy2 + huudu2 + hvvdv2 + . . . (11)

where the dots denote the angular components. In this
metric the light paths on the lower and upper half of the
causal diamond shown in Fig. 1 are given by

v = L + �v(u) and u = L + �u(v)

The total length fluctuation �L can be expressed as

�L = (�v(L) + �u(L)) /2.

It turns out that only one metric component contributes
to the time delay along each light path. As we will show
in a companion paper, the values for �v(L) and �u(L) can
be expressed in terms of the metric fluctuations via

�v(L) =

Z L

�L
du huu(u, L) (12)

�u(L) =

Z L

�L
dv hvv(L, v).

As a next step, to employ our postulates, we recast the
metric in the Schwarzschild-like form

ds2 = �f(R)dT 2 +
dR2

f(R)
+ r2(d✓2 + sin2 ✓d�2). (13)

in such a way that the light paths of the photon are mapped
onto the event horizon located at f(R) = 0. This is
achieved by making the coordinate transformation

(u � L)(v � L) = 4L2f(R), log
u � L

v � L
=

T

L
(14)

where the function f(R) is given by
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Length fluctuations with Planckian white noise.

In this paper we consider a toy experimental set-up,
shown in Fig. 1, in which the arm length L of an
interferometer is measured after a single light crossing.
In this idealized scenario the length fluctuations �L due
to quantum fluctuations in the metric is given by

�L(t) =
1

2

Z L

0
dz h(t+z�L) (1)

where h ⌘ hzz is the metric component along the light
beam propagation (see e.g. [15]). The magnitude of these
length fluctuations is normally expressed in terms of the
power spectral density (PSD)

S(!, t) =

Z 1

�1
d⌧

⌧
�L(t)

L

�L(t � ⌧)

L

�
e�i!⌧ . (2)

Let us first consider a simple model with a white noise
signal of Planckian amplitude

⌦
h(t+z1�L)h(t+z2�L�⌧)

↵
= Clp�(⌧ +z1�z2), (3)

where lp =
p

8⇡GN . This leads to a PSD of the form

S(!) =
Clp
4

sin2 !L

!2L2
. (4)

In this simple model the length fluctuations h�L2i obey
⌧

�L2(t)

L2

�
=

1

2⇡

Z 1

�1
d! S(!) =

Clp
8L

, (5)

and thus grow linearly with L [8–12]. This signal could
in principle be observable, since the peak sensitivity for
gravitational wave interferometers is right around the
Planck scale: S(!, t) . lp. Over the next sections our
goal will be to show how some of the generic behavior in
Eqs. 4, 5 can arise from a holographic model, motivat-
ing the size of the constant C, with crucial observational
e↵ects arising from angular correlations. In addition, in
experiments like LIGO and Virgo a typical photon tra-
verses the interferometer arm multiple times before being
measured. In this paper we continue to focus on our sim-
ple set up and defer the detailed discussion of multiple
crossings to future work.

Holographic Scenario and Basic Postulates.

Our aim in the following is to derive a result similar to
Eq. 5 from a holographic scenario, in which the holo-
graphic surface is fixed by the light path of a photon, as
depicted in Fig. 1. In order to clearly delineate between
theoretical input and observational consequences, we will
state here our three basic postulates:

1. Statistical independence of small scale fluctuations.

We postulate that the length fluctuation �L can be
obtained by subdividing the interferometer arm in
segments and summing over the statistically inde-
pendent length fluctuations of each segment. This
postulate is equivalent to the Ansatz in Eq. 3 and
implies that length fluctuations, �L2, accumulate
linearly with distance, as shown in Eq. 5.

signal	beam
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FIG. 1. The interferometer together with the spacetime di-
agram for a single crossing of a photon in the signal beam.
The interferometer at time t is contained in a causal diamond
centered at the beam splitter and with the photon path on its
null boundary.

2. Holographic principle in flat spacetime. We postu-
late that the holographic principle also applies to
Minkowski spacetime. It states that the maximal
entropy carried by the microscopic degrees of free-
dom associated with a finite region of flat spacetime
bounded by null geodesics is S = A/4GN . This
bound is saturated for a region of space whose null
boundary coincides with a horizon.

3. Universality of metric fluctuations at horizons. We
postulate that metric fluctuations near null surfaces
associated with a horizon are universal and follow
from the entropy and temperature using standard
thermodynamic considerations. This postulate im-
plies that metric fluctuations near a Rindler-type
horizon are identical to those near a black hole hori-
zon with the same temperature and entropy.

The first postulate implies that the ultraviolet Planck-
ian fluctuations accumulate in the longitudinal direction
along the interferometer arm. The second and third pos-
tulate allow us to determine the size and transversal
correlations of the length fluctuations from the metric
perturbations near the holographic surface surrounding
the interferometer. To be able to apply the third pos-
tulate we will identify the boundary of the holographic
surface with the event horizon of a (family of) Rindler
observer(s). By following a reasoning similar to what
has been considered in the context of black holes (see
Ref. [16]) we show that energy fluctuations of the holo-
graphic degrees of freedom lead to an uncertainty in the
position of the horizon. We subsequently translate this
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Figure 1: The interferometer together with the spacetime diagram for
a single crossing of a photon in the signal beam. The interferometer
at time t is contained in a causal diamond centered at the beam
splitter and with the photon path on its null boundary.

only three coordinates, one longitudinal null direction and
two transversal directions, corresponding to the outside
boundary of the causal diamond in Fig. 1,
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We first consider an Ansatz corresponding to uncorrelated
white noise in those three dimensions:

⌦
h(k1)h(k2)

↵
= (2⇡)3�3(k1 + k2)Cl3p. (7)

This power spectrum implements the principle of statisti-
cal independence both in the longitudinal as well as the
transversal directions. This can be seen directly by com-
puting the PSD and RMS length fluctuations:
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In the limit �xT ! 0, we recover a signal of an amplitude
that is in principle within the observable range and is con-
sistent with Eqs. 4-5. However, for a realistic macroscopic
interferometer, with the beam size centimeters across such
that �xT /lp�1, this signature would be unobservable.

Let us consider an alternative Ansatz for the metric
fluctuations in which the transversal directions are treated
di↵erently:

⌦
h(k1)h(k2)

↵
= (2⇡)3�3(k1 + k2)

Clp
(k2

T + k2
IR)

, (9)

where kIR acts as a regulator. Then Eq. (8), in the limit
that kIR�xT ⌧ 1, becomes

⌧✓
�L

L

◆

1

✓
�L

L

◆

2

�
⇠ Clp

16⇡L
log [1/�xT kIR] . (10)

Already this result shows important features that the
underlying theory must give, notably that the longitudi-
nal and transverse directions appear on a di↵erent footing.
The metric fluctuation in the transverse direction must be
correlated, while the metric fluctuations in the longitudi-
nal direction accumulate, as in a random walk, and are
transmuted to a low-energy, long-distance signature. We
will show over the next sections how these features arise
naturally from energy fluctuations on a holographic sur-
face.

5. From Minkowski to Schwarzschild-like Metric

The central part of our argument involves utilizing
a correspondence between any horizon and a black hole
horizon. To show concretely how this applies to the case
at hand, we make two metric transformations, which are
described below. First we define light cone coordinates
u = r + t and v = r � t so that metric becomes

ds2 = dudv + dy2 + huudu2 + hvvdv2 + . . . (11)

where the dots denote the angular components. In this
metric the light paths on the lower and upper half of the
causal diamond shown in Fig. 1 are given by

v = L + �v(u) and u = L + �u(v)

The total length fluctuation �L can be expressed as

�L = (�v(L) + �u(L)) /2.

It turns out that only one metric component contributes
to the time delay along each light path. As we will show
in a companion paper, the values for �v(L) and �u(L) can
be expressed in terms of the metric fluctuations via

�v(L) =

Z L

�L
du huu(u, L) (12)

�u(L) =

Z L

�L
dv hvv(L, v).

As a next step, to employ our postulates, we recast the
metric in the Schwarzschild-like form

ds2 = �f(R)dT 2 +
dR2

f(R)
+ r2(d✓2 + sin2 ✓d�2). (13)

in such a way that the light paths of the photon are mapped
onto the event horizon located at f(R) = 0. This is
achieved by making the coordinate transformation

(u � L)(v � L) = 4L2f(R), log
u � L

v � L
=

T

L
(14)

where the function f(R) is given by

3

f(R) = 1 � R

L
+ 2�. (15)

Here � plays the role of the Newtonian potential and
parametrizes the deviations in the geometry due to vac-
uum fluctuations in the energy conjugate to the time T .

Without any quantum gravity e↵ects, the horizon is
located at R = L. In general, its location is determined
by f(R) = 0. This leads to the following relationship
between the product of the lightcone time variations �u(L)
and �v(L) and the value of Newton’s potential

�v(L)�u(L)

L2
= 2�(L). (16)

This equation should be regarded as an operator identity.
Since h�i = 0 in vacuum, the right-hand-side of this equa-
tion actually represents a fluctuation around the vacuum,
whose amplitude is given by squaring the operators and
taking its expectation value:

*✓
�v(L)�u(L)

L2

◆2
+

=
D
4�(L)2

E
. (17)

For a more detailed and formal discussion of this point
in the context of AdS/CFT, we encourage the reader to
consult Sec IV of our companion paper Ref. [18].

The goal of the next section is to determine the root-
mean-square value of the fluctuations in � in an ensemble
averaged over many interferometer light crossings.

6. Holographic Model for Spacetime Fluctuations

We are now ready to employ all of our postulates to-
gether to compute the deviations in the Newtonian poten-
tial, Eq. 16. The fluctuations in �(L) will be induced by
vacuum fluctuations in the energy conjugate to the time
coordinate T . Eq. 16. In the following analysis we follow
closely the reasoning of Marolf in Ref. [16] for the quan-
tum thickness of black hole horizons. Directly applying the
holographic principle to the horizon of the causal diamond
gives

Shor =
A

4GN
=

8⇡2L2

l2p
. (18)

Now the fluctuations in the Newtonian potential on the
horizon obeys

2�(L) = �
l2p�M

4⇡L
, (19)

where �M represents the energy fluctuations in the holo-
graphic degrees of freedom. Heuristically, one expects the
RMS value of �M to scale as the square root of the num-
ber of pixels on the horizon, times the typical energy of the
fluctuation, which is given by the Hawking temperature.

One of the standard methods to determine the Hawk-
ing temperature is to go to Euclidean time and impose

that the resulting metric is free from conical singularities.
In this way one finds

Thor =
|f 0(L)|

4⇡
=

1

4⇡L
. (20)

In the present situation the temperature Thor is measured
by an accelerated observer whose event horizon coincides
with the photon trajectory and whose own trajectory passes
through the origin at T = 0. This observer stays at R = 0
and has T as proper time coordinate.

We now calculate the RMS value of the fluctuations,
by assuming that the vacuum energy E vanishes. This
implies that the free energy F (�) equals

F (�) = �ThorShor = � �

2l2p
(21)

where in the last step we eliminated the length L in favor
of the inverse temperature � = 1/Thor = 4⇡L. In the
canonical ensemble the mass fluctuations �M are obtained
by taking the second derivative of the free energy. One
thus obtains

h�M2i = � @2

@�2
(�F ) =

1

l2p
. (22)

Note that �M ⇠ Thor
p

Shor, as expected from the heuris-
tic argument. We now assume that at a coincident point,
�v(L) and �u(L) take the same value �L. In this situation,
combining Eqs. 16-22, we learn that the amplitude of the
length fluctuation is

⌧
�L2

L2

�
=

l2p�M

4⇡L
=

lp
4⇡L

, (23)

where here �M =
p

h�M2i is interpreted as the root-
mean-square of the mass fluctuation. Note this has pre-
cisely the behavior shown in Eq. 5 needed to be observable,
where now we can fix the constant C via the holographic
principle. We will propose in the next section that angu-
lar correlations between the interferometer arms respect
the spherical symmetry of the measuring apparatus, and
would give rise to a distinctive experimental signature.

7. Angular Correlations and ’t Hooft’s S-matrix

We have considered so far the amplitude of the fluctu-
ations only as a function of the longitudinal coordinates.
Physically it is clear that the fluctuations will also have an
angular dependence, which can be straightforwardly deter-
mined for an interferometer with two arms of equal length
L. In this case, a spherical coordinate system, with origin
at the beamsplitter, is appropriate, with the far mirrors
located at two positions r̃1, r̃2 on the sphere. In this ex-
perimental configuration, the angular information can be
determined with the help of the Newtonian potential � de-
composed in terms of spherical harmonics, thus respecting
the spherical symmetry of the measuring apparatus.
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FIG. 4. The horizon fluctuations are indicated by red (for positive) and blue (for negative) pixels.

The horizon fluctuations appear coherent in the transversal direction

rise to fluctuations in the Newtonian potential Φ. The fluctuations of the Newton potential

Φ simply shift the function f(R) via

f(R) = (1− R

L
+ 2Φ) (48)

such that we have the relation

2Φ = huhv =
δL2

4L2
. (49)

[KZ: This discussion should be made to dovetail with the discussion in the

previous section. We ultimately want to de-emphasize the temperature and em-

phasize instead the entropy.] Following the general logic of the holographic principle we

imagine that on the horizon we have one degree of freedom on every Planckian pixel. Hence,

we postulate that the total number of holographic degrees of freedom may be identified with

the entropy S associated with the horizon of spherical Rindler space

S =
A

4G
=

8π2L2

ℓ2p
. (50)

The energy associated with each degree of freedom can fluctuate by an amount of the

order or T =
1

4πL
. If all pixels would carry a positive energy of this amount, one would

create a black hole with size L. In Minkowski space, however, the average energy vanishes.

Nevertheless, there can be fluctuations of the vacuum energy inside this causal diamond.
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rise to fluctuations in the Newtonian potential Φ. The fluctuations of the Newton potential

Φ simply shift the function f(R) via

f(R) = (1− R

L
+ 2Φ) (48)

such that we have the relation

2Φ = huhv =
δL2

4L2
. (49)

[KZ: This discussion should be made to dovetail with the discussion in the

previous section. We ultimately want to de-emphasize the temperature and em-

phasize instead the entropy.] Following the general logic of the holographic principle we

imagine that on the horizon we have one degree of freedom on every Planckian pixel. Hence,

we postulate that the total number of holographic degrees of freedom may be identified with

the entropy S associated with the horizon of spherical Rindler space

S =
A

4G
=

8π2L2

ℓ2p
. (50)

The energy associated with each degree of freedom can fluctuate by an amount of the

order or T =
1

4πL
. If all pixels would carry a positive energy of this amount, one would

create a black hole with size L. In Minkowski space, however, the average energy vanishes.

Nevertheless, there can be fluctuations of the vacuum energy inside this causal diamond.
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=
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FIG. 1. The interferometer inside a causal diamond.

The photon path coincides with the Rindler horizon located at ⇢ = 0, but its position

can fluctuate over a distance �⇢. Instead of using the functions �v(u) and �u(v) we can

thus parametrize the entire photon trajectory in terms of a single function �⇢2(⌧) in Rindler

space. The reason for adding the square will become clear below.

The relationships between the function �⇢2(⌧) with �v(u), and respectively �u(v), is found

by solving the implicit equations

�⇢2(u) = (L � u)�v(u) and ⌧(u) =
1

2
log

�v(u)

L � u
(15)

for the first part of the trajectory and

�⇢2(v) = (L+ v)�u(v) and ⌧(v) = �1

2
log

�u(v)

L+ v
(16)

for the second part, where for the moment we suppressed the dependence on the transversal

coordinates. These pair of trajectories need to be matched at the spacetime location at

which the photons reach the second mirror. In light cone coordinates this reflection point

corresponds to (u, v) = (�u(�L), �v(L)), which translates in terms of Rindler coordinates

to the following equations

�⇢2(L) = �u(�L)�v(L) and ⌧(L) =
1

2
log

�u(�L)

�v(L)
(17)
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2) VACUUM FLUCTUATION SOURCES METRIC FLUCTUATION 

�L ⇠
p

lpL
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Here we have put the moment of reflection at T = 0, so
that �v(L) and �u(L) take the same value. The next step
is to determine the value of the Newton potential �(L)
that is induced by the vacuum fluctuations in the energy
conjugate to the time coordinate T .

Holographic model for spacetime fluctuations.

We are now ready to employ all of our postulates together
to compute the deviations in the Newtonian potential,
Eq. 16. In the following analysis we follow closely the
reasoning of Marolf in Ref. [16] for the quantum thickness
of black hole horizons. Directly applying the holographic
principle to the horizon of the causal diamond gives

Shor =
A

4GN
=

8⇡2L2

l2p
. (17)

Now the Newtonian potential on the horizon equals

�(L) = �
l2p�M

8⇡L
, (18)

where �M is the RMS value of the energy fluctuations
in the holographic degrees of freedom. Heuristically, one
expects that �M scales as the square root of the number
of pixels on the horizon, times the typical energy of the
fluctuation, which is given by the Hawking temperature.

One of the standard methods to determine the Hawk-
ing temperature is to go to Euclidean time and impose
that the resulting metric is free from conical singularities.
In this way one finds

Thor =
|f 0(L)|

4⇡
=

1

4⇡L
. (19)

In the present situation the temperature Thor is mea-
sured by an accelerated observer whose event horizon co-
incides with the photon trajectory and whose own tra-
jectory passes through the origin at T = 0. This observer
stays at R = 0 and has T as proper time coordinate.

We now calculate the RMS value of the fluctuations,
by assuming that the vacuum energy E vanishes. This
implies that the free energy F (�) equals

F (�) = �ThorShor = � �

2l2p
(20)

where in the last step we eliminated the length L in fa-
vor of the inverse temperature � = 1/Thor = 4⇡L. In the
canonical ensemble the mass fluctuations �M are ob-
tained by taking the second derivative of the free energy.
One thus obtains

h�M2i = � @2

@�2
(�F ) =

1

l2p
. (21)

Note that �M ⇠ Thor
p

Shor, as expected from the
heuristic argument. Combining Eqs. 16-21, we learn

⌧
�L2

L2

�
=

l2p
p

h�M2i
⇡L

=
lp
⇡L

. (22)

Note this has precisely the behavior shown in Eq. 5
needed to be observable, where now we can fix the con-
stant C via the holographic principle. The spectrum, as
shown in Eq. 4, is white noise at low frequencies, but is
filtered at higher frequencies. As we will see, the distinc-
tive experimental signature is in the angular correlations
arising from the Newtonian potential itself.
Angular correlations and ’t Hooft’s S-matrix.

We have considered so far the amplitude of the fluctua-
tions only as a function of the longitudinal coordinates.
Physically it is clear that the fluctuations will also have
an angular dependence, which is described statistically in
terms of the two point correlation function of the coordi-
nate shifts �v(r̃) and �u(r̃), where r̃ denotes the coordi-
nates on the sphere of radius L. This angular information
can again be determined with the help of the Newtonian
potential, namely by applying a spherical harmonic de-
composition. By generalizing our reasoning to include
the angular coordinates, one obtains the following two
point function for the coordinate shifts

⌦
�v(r̃1)�u(r̃2)

↵
=

lpL

⇡
G(r̃1, r̃2), (23)

where G(r̃1, r̃2) represents the Green function of a mod-
ified Laplacian on the sphere. It obeys

✓
�r2

r̃1 +
1

L2

◆
G(r̃1, r̃2) = �(2)(r̃1, r̃2), (24)

and appears by integrating the 3D Green function along
the radial direction corresponding to the beam. At short
distances it behaves as the normal Green function on the
2D-plane

G(r̃1, r̃2) ⇠ 1

2⇡
log

✓
L

|r̃1�r̃2|

◆
for |r̃1�r̃2|<<L.(25)

In terms of spherical harmonics it has the expansion

G(r̃1, r̃2) =
X

`,m

Y`,m(r̃1)Y ⇤
`,m(r̃2)

`2 + ` + 1
. (26)

Using the relation between metric and length fluctuations
given by Eq. 13, this uncertainty relation can be written
in terms of the coe�cients, v`m and u`0m0 , of the decom-
position of �v(r̃) and �u(r̃) in to spherical harmonics,

⌦
v`mu`0m0

↵
=

1

⇡

lpL

`2 + ` + 1
�``0�mm0 . (27)

This relation tells us that much of the power in the fluctu-
ations is contained in the low ` modes, and thus appears
on the largest scales, contrary to one’s intuition about
Planckian e↵ects.

Our result implies a fundamental uncertainty relation
between the longitudinal spacetime components. We
briefly comment on the connection with the work by ’t
Hooft on the gravitational S-matrix. As ’t Hooft showed,
the in-going and out-going radiation at the horizon causes
a spacetime shift due to gravitational shock waves. He

� ⇠ lp
L
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MOTIVATION: EXPERIMENTAL MEASUREMENT OF THEORETICALLY ESTIMATED EFFECT

➤ Theory is generically predictive: amplitude (and angular 
correlations, assuming symmetric geometry) 

➤ Theory is not yet powerful enough to give power spectral 
density  

➤ which corresponds to being able to correlate two causal 
diamonds

to heuristically connect holography to interferometry (e.g.
[8, 9, 10, 11, 12]), our theoretical description is structurally
unique in its holographic set-up. And although the first
steps we take–employing a Planckian random walk–shares
commonalities with these works, our approach di↵ers in
the sense that we present a concrete theoretical model
leading to length fluctuations along the longitudinal di-
rection with a distinctive signature for strong transverse
correlations, which is, as a consequence, macroscopically
observable in an interferometer. A phenomenological re-
sult is that constraints from the images of distant astro-
physical sources derived for uncorrelated fluctuations in
Refs. [13, 14] do not apply to our model.

2. Length Fluctuations with Planckian White Noise

In this paper we consider a toy experimental set-up,
shown in Fig. 1, in which the arm length L of an inter-
ferometer is measured after a single light crossing. In this
idealized scenario the length fluctuations �L due to quan-
tum fluctuations in the metric is given by

�L(t) =
1

2

Z L

0
dz h(t+z�L) (1)

where h ⌘ hzz is the metric component along the light
beam propagation (see e.g. [15]). The magnitude of these
length fluctuations is normally expressed in terms of the
power spectral density (PSD)

S(!, t) =

Z 1

�1
d⌧

⌧
�L(t)

L

�L(t � ⌧)

L

�
e�i!⌧ . (2)

Let us first consider a simple model with a white noise
signal of Planckian amplitude

⌦
h(t+z1�L)h(t+z2�L�⌧)

↵
= Clp�(⌧ +z1�z2), (3)

where lp =
p

8⇡GN . This leads to a PSD of the form

S(!) =
Clp
4

sin2 !L

!2L2
. (4)

In this simple model the length fluctuations h�L2i obey
⌧

�L2(t)

L2

�
=

1

2⇡

Z 1

�1
d! S(!) =

Clp
8L

, (5)

and thus grow linearly with L [8, 9, 10, 11, 12]. This signal
could in principle be observable, since the peak sensitiv-
ity for gravitational wave interferometers is right around
the Planck scale: S(!, t) . lp. Over the next sections our
goal will be to show how some of the generic behavior in
Eqs. 4, 5 can arise from a holographic model, motivating
the size of the constant C, with crucial observational ef-
fects arising from angular correlations. In addition, in ex-
periments like LIGO and Virgo a typical photon traverses
the interferometer arm multiple times before being mea-
sured. In this paper we continue to focus on our simple set
up and defer the detailed discussion of multiple crossings
to future work.

3. Holographic Scenario and Basic Postulates

Our aim in the following is to derive a result similar
to Eq. 5 from a holographic scenario, in which the holo-
graphic surface is fixed by the light path of a photon, as
depicted in Fig. 1. In order to clearly delineate between
theoretical input and observational consequences, we will
state here our basic postulates:

1. Holographic principle in flat spacetime. We postu-
late that the holographic principle also applies to
Minkowski spacetime. It states that the maximal
entropy carried by the microscopic degrees of free-
dom associated with a finite region of flat spacetime
bounded by null geodesics is S = A/4GN . This
bound is saturated for a region of space whose null
boundary coincides with a horizon.

2. Universality of metric fluctuations at horizons. We
postulate, as a corollary of the first postulate, that
metric fluctuations near null surfaces associated with
the boundary of a finite region follow from the en-
tropy and temperature using standard thermody-
namic considerations. This postulate implies that
metric fluctuations near a Rindler-type horizon are
identical to those near a black hole horizon with the
same temperature and entropy.

Note that we are treating the metric fluctuations at
the holographic surface separating the inside of the causal
diamond from the outside as if it were a black hole hori-
zon (see Ref. [16]), even though we are considering the
vacuum of Minkowski space. The basic reason we believe
these are reasonable postulates is that a finite causal dia-
mond in Minkowski space, when suitably foliated, can be
recast in the metric of a so-called topological black hole
[17]. Furthermore, a conformal field theory restricted to
the diamond behaves as a thermal field theory [17], and
the quantized Einstein-Hilbert metric in the infrared be-
haves as a conformal field theory. In related work [18], we
show that these postulates are justified in the context of
AdS/CFT. That they hold for the Einstein-Hilbert metric
in Minkowski space must, at the present time, be ulti-
mately verified by experiment. Fortunately, we show that
the experimental signatures associated with a spacetime
obeying these postulates are within reach with current in-
terferometer technology.

4. Towards Macroscopic E↵ects in Interferometers

The results in Eqs. 3-5, that were derived from the
simple 1D-model, are by themselves not su�cient to show
an e↵ect. In order to be observable in a realistic experi-
mental set up, the fluctuations must be coherent at macro-
scopic spacetime distances. To examine the conditions un-
der which such coherent fluctuations occur, we extend our
model by including the two spatial directions transverse
to the beam direction. Anticipating our holographic de-
scription, we consider metric fluctuations that depend on

2
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the extra boundary term that arises from varying the EH action cancels against the variation of

the GHY term. We will see a similar mechanism in action shortly.

We consider spherically-symmetric metrics in the general form

ds
2 = gab(x

0
, x

1)dx
a
dx

b + ⇢
2(x0

, x
1)d⌦2

2 . (6)

where x
0 and x

1 will be referred to as the light-cone coordinates1, the radius ⇢ is a scalar function of

x
0 and x

1, and d⌦2

2
is the line element of a two-dimensional unit sphere. Geometrically speaking, ⇢

sets the radius of the horizon. As we will see below, ⇢
2 plays the role of a dilaton, which corresponds

to the horizon area (and hence the entropy).

A generalization of the conformal equivalence Mink4 ⇠=AdS2⇥S2 noted in Eqs. (3)-(4) is a similar

relation between a spherically-symmetric metric (6) and the space of the form M̃2⇥S2:

ds
2 =

⇢
2

L2

✓
L
2

⇢2
gabdx

a
dx

b + L
2
d⌦2

2

◆
. (7)

Ultimately we would like to work with an AdS2 metric, which motivates us to denote the metric

in the parenthesis as g̃µ⌫ = (L2
/⇢

2)gµ⌫ , and compute the action in terms of g̃µ⌫ .

A few remarks are in order:

• Since Einstein gravity is not conformally invariant, g̃µ⌫ does not satisfy the usual vacuum

Einstein equation. However, it still satisfies the equation of motion that follows from action

Eq. (5) after the contribution of the conformal factor is properly accounted for.

• The conformal relation between gµ⌫ and g̃µ⌫ in Eq. (4) works for any choice of positive L.

We find it most convenient to choose L that coincides with the interferometer arm length.

• Weyl transformations do not alter the causal structure of a metric. A null geodesic in gµ⌫ is

still a null geodesic in g̃µ⌫ .

A. Einstein-Hilbert Action

We first consider the EH action. The curvatures of gµ⌫ and g̃µ⌫ are related by [10]

R4 = L
2(⇢�2

R̃4 � 6⇢
�32̃⇢) , (8)

1
We use Greek letters for bulk coordinates in four dimensions and Latin letters from the early part of the alphabet

for the light-cone coordinates.

6

horizon in one-sided Minkowski is identical to that of the two-sided AdS horizon connecting the

two boundaries. Hence, one can compute the physical photon roundtrip time by calculating the

time for a photon to travel from one AdS boundary to the boundary on the other side of AdS along

the horizon. We will see that the other side of AdS serves as a convenient tool for us to compute

quantum fluctuations in the physical observable by computing how one side of AdS fluctuates with

respect to the other side.

The outline of the paper is as follows. In Sec. II, we discuss how the JT action can be obtained

by dimensionally reducing the familiar gravitational action and dropping a subdominant kinetic

term in the near-horizon limit. In Sec. III, we study the AdS geometry and introduce various useful

coordinate systems. In Sec. IV, we define our observable in the context of JT gravity and compute

its fluctuations. Finally, in Sec. VI, we discuss implications of our results and mention a few future

directions.

II. DIMENSIONAL REDUCTION TO THE JT ACTION

We begin by dimensionally reducing the familiar gravitational action in 4-d Minkowski space-

time, in the near-horizon limit, to the 2-d JT action. As advertised above, this calculation is similar

to the previous work by one of the authors [2] on small empty diamonds. There are, however, a

couple of important di↵erences with these earlier works. First, in line with theories of JT gravity,

our dimensionally-reduced manifold has a boundary. We thus must include the boundary contribu-

tions during the dimensional reduction process, which will ultimately lead to the boundary action

in JT gravity. This is crucial for our later analysis since the bulk action vanishes on-shell for JT

gravity, and thus the boundary term gives rise to the sole degree of freedom. Second, we perform

a (di↵erent) Weyl rescaling to bring the two-dimensional metric into the AdS2 form to align with

the exact JT gravity setup studied in the literature.

On a 4-manifold M4, the total action, I = IEH + IGHY, is the sum of the bulk Einstein-Hilbert

(EH) action and the boundary Gibbons-Hawking-York (GHY) action:

IEH =
1

16⇡GN

Z

M4

d
4
x
p

�g4R4

IGHY =
1

8⇡GN

Z

@M4

d
3
x
p

��3K3 (5)

where GN is the 4-d gravitational constant, �3 is the induced metric on the boundary, g4 is the

metric with the Ricci scalar R4 and the extrinsic curvature K3 on @M4. The GHY action is needed

in gravitational theories with a boundary to make the variational problem well-posed. In particular,
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B. Gibbons-Hawking-York Action

We now turn our attention to the GHY action. The normal vector of the boundary transforms

as ñ
µ = (⇢/L)nµ, hence the extrinsic curvature transforms as

K3 = rµn
µ

=
1

p
�g4

@µ(
p

�g4n
µ)

=

✓
L

⇢

◆
4 1

p
�g̃4

@µ

✓⇣
⇢

L

⌘
3p

�g̃4ñ
µ

◆

=
L

⇢
K̃3 + 3

L
2

⇢2
ñ
µ
r̃µ

⇢

L
. (12)

Putting this into the GHY action in Eq. (5) gives

IGHY =
1

8⇡GN

1

L2

Z

@M̃4

d
3
x

p
��̃3

✓
⇢
2
K̃3 +

3

2
g̃
µ⌫

ñµr̃⌫⇢
2

◆
. (13)

Since the boundary @M4 is taken to be spherically symmetric, only the light-cone component of

the normal vector n
µ is non-zero, which then coincides with n

a, the normal vector to @M2. On the

other hand, projection to M̃2 gives a simple relation K̃3 = K̃1, where K̃1 is the extrinsic curvature

of g̃ab on @M̃2. This allows us to perform the dimensional reduction

IGHY =
1

2GN

Z

@M̃2

dx
0
p

��̃1⇢
2
K̃1 +

3

4GN

Z

@M̃2

dx
0
p

��̃1g̃
ab

ñar̃b⇢
2
. (14)

We see that the extra boundary term from the EH action precisely cancels the second term in the

GHY action. The total action then becomes

I =
1

4GN

Z

M̃2

d
2
x

p
�g̃2

✓
⇢
2
R̃2 + 6(r̃⇢)2 +

2

L2
⇢
2

◆
+

1

2GN

Z

@M̃2

dx
0
p

��̃1⇢
2
K̃1 . (15)

Similar cancellations have been noted in Ref. [11] while models with actions similar to Eq. (15)

have been extensively studied in Ref. [12].

C. Near-horizon Limit

We now examine the metric and the action near the horizon of a Minkowski causal diamond of

size L. The metric in the interior of a causal diamond is obtained from Eq. (3) via the transfor-

mation [5]

t = 2L sinh

✓
T

2L

◆r
1 �

R

L

r = L � 2L cosh

✓
T

2L

◆r
1 �

R

L
, (16)

in near-horizon limit
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With this information in hand, we can consider the dilaton kinetic term in Eq. (20) using the

Poincaré coordinates4

ds̃
2 = L

2
�dt

2 + dz
2

z2
, (24)

where the boundary is located at z = 0. Since the dilaton diverges as � ⇠ 1/z near z = 0 and has

the dimension of [length]2, by dimensional analysis, one finds � ⇠ l
2
pL

2
E/z where E is the energy

associated with the causal diamond. The derivatives evaluate to (r̃�)2 = g
zz

@z�@z� = �
2
/L

2
⇠

�
2
/�0. Hence we can evaluate Eq. (20)

(r̃�)2

�0 + �
⇡

1

�0

1

1 + �/�0

�
2

�0

=
�
2

�
2

0

+ O

✓
�
3

�
3

0

◆
, (25)

which is quadratic in �/�0 at the leading order, and thus can be omitted in Eq. (15). This leaves

us with the JT action

I =

Z

M̃2

d
2
x

p
�g̃2�

✓
R̃2 +

2

L2

◆
+ 2

Z

@M̃2

dx
0
p

��̃1�K̃1 . (26)

where we have defined the dimensionless dilaton field

� =
⇢
2

4GN
, (27)

which controls the size of the S2. We will also show that this field controls how long it takes for a

photon to traverse from the bottom to the top of the causal diamond.

III. THE TWO-SIDED ADS GEOMETRY AND CLASSICAL DILATON SOLUTION

Before considering the quantum fluctuations, we discuss the classical equations of motion for

both the metric field and the dilaton. This will allow us to determine how the dilaton is related to

fluctuations in geodesic distances, that we can in turn relate to photon travel times in the original

4-d Minkowski space. The equations of motion read:

R̃2 +
2

L2
= 0

(L2
r̃ar̃b � g̃ab)� = 0 . (28)

4 We use the symbol t for both the Minkowski time and the AdS time in Poincaré coordinates since they can be

identified with each other via the Weyl rescaling of Eq. (4), while di↵erent notations are used for the spatial

coordinates, z and r.

 

JT Gravity 

𝑔𝜇𝜈 = (𝜌2/𝐿2)𝑔𝜇𝜈 

 Mink4 

AdS2 

S2 

𝛷 =
𝜌2

4𝐺𝑁
 

 

𝑔𝜇𝜈 𝑔𝜇𝜈 

near-horizon 

Einstein Gravity 



MOTIVATION: JT SOLUTION

Gukov, Lee, KZ 2205.02233

15

x � 0, i.e. the right exterior region. This can be easily verified by noting the relation with the

Poincaré coordinates

tan
⌧

L
=

2Lt

L2 � t2 + z2

x =
L
2 + t

2
� z

2

2z
. (40)

Moreover, one could check that the horizon is located at x = ±L tan (⌧/L), while the AdS boundary

is at x ! ±1. Hence, the causal diamond is a subset of the right coordinate patch, while the

global coordinates e↵ectively provide the maximal extension of the patch. An analogous coordinate

system can be set up to describe the left exterior region, thus e↵ectively factorizing the system.

With the groundwork laid on the relation between the dilaton and coordinate systems, we can

now compute the quantum fluctuations.

IV. SPACETIME FLUCTUATIONS IN JT GRAVITY

Our analysis mostly follows Ref. [8], which was originally motivated by the factorization prob-

lem [15, 16]. Instead of applications to the factorization problem, we use this framework for

constructing the action and its solutions beyond the classical saddle point approximation.

One important feature of the JT gravity is that it can be reduced to a 1-d quantum mechanics

on the boundary. The Hamiltonian of the QM problem is obtained by evaluating the stress-energy

tensor on each boundary, left and right, using the action in Eq. (26):

HL = HR =
�2

h

L�b
. (41)

The Hamiltonian on the left (resp. right) boundary is conjugate to the time variable tL (resp.

tR), denoting the Schwarschild time on the respective AdS boundary. Alternatively, on can define

conjugate momentum P and length (which we denote Lg to distinguish it from the AdS radius).

In these variables, the symplectic form ⌦ looks like [8]

⌦ = d� ^ dH = dLg ^ dP , (42)

where H = HL + HR is the total Hamiltonian. The two canonical conjugate pairs are (�, H) and

(Lg, P ).

20

We will later identify the entropy of the system to be the black hole entropy associated with

the causal diamond horizon, i.e.

S =
A

4GN

=
8⇡

2
L
2

l2p
. (55)

In order to understand the fluctuation in �, we now turn our attention to the calculation in

the (Lg, P ) basis with two asymptotic boundaries in global coordinates. Following Ref. [8], this

can be achieved by studying the Hartle-Hawking wavefunction, which can be interpreted as a

wormhole connecting the two boundaries. Operationally, this amounts to computing the action

in Eq. (26) with the metric in Eq. (47), where the boundaries of the manifold is now the AdS

conformal boundary with length rc�/2 and a bulk boundary ⌃. The action in Eq. (26) also has to

be modified to include contributions from the two corners of the geometry. The result is

�IE =
8L�b

�

✓
y
2 +

2y

tan y

◆
, (56)

where � is the periodicity of the Euclidean time and

y =
rs�

4L2
=

1

4

��h

L�b

a =
sin y

y
= 4L�be

Lg/2L�
�1

, (57)

and a  1. We observe that IE is minimized at y = ⇡/2, which corresponds to � = 0 according to

Eq. (45). Expanding near the peak, one finds [8]

�IE = constant �
8L�b

�

⇣
y �

⇡

2

⌘
2

= constant �
⇡
2

2

�b

�L
(Lg � Lg,peak)

2

= constant �
S

16L2
(Lg � Lg,peak)

2
, (58)

where in addition to Eq. (53), we used Eq. (48) in the last line, which is expected to hold at the

peak of the wavefunction as required by smoothness at r = rs in Eq. (35). This suggests that the

uncertainty of Lg is

�Lg =
2
p

2L
p

S
, (59)

Using Eq. (46), this translates to the variance in �

��
2 =

2
p

2L
4

r2s
p

S
. (60)
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�IE =
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�

✓
y
2 +

2y

tan y

◆
, (56)

where � is the periodicity of the Euclidean time and

y =
rs�

4L2
=

1

4

��h

L�b

a =
sin y

y
= 4L�be

Lg/2L�
�1

, (57)
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�

⇣
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⇡

2

⌘
2
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⇡
2

2

�b

�L
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2
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S

16L2
(Lg � Lg,peak)

2
, (58)

where in addition to Eq. (53), we used Eq. (48) in the last line, which is expected to hold at the

peak of the wavefunction as required by smoothness at r = rs in Eq. (35). This suggests that the
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2
p
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p

S
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2
p

2L
4
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S
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FIG. 2: Embedding of the the AdS2 in Minkowski space of signature (2,1). The explicit relation

between the coordinate is summarized in Eq. 32. In these coordinates, the two AdS2 boundaries

(related by the reflection symmetry) are at X ! ±1. In Poincaré coordinates, these boundaries

correspond to z = 0± shown in Fig. 3.
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Poincaré

boundary

horizon

rs

r

t

Schwarzschild

0
x

��L/2

0

�L/2

� mirror

Global

FIG. 3: Causal diamonds in di↵erent AdS coordinates. In all three panels, the shaded region

corresponds to a causal diamond in one half of the entire AdS space, which in embedding

coordinates is X ! +1 shown in Fig. 2. It is also the shaded region that corresponds to the

interior of the causal diamond in the original Minkowski spacetime, which will be the focus of our

attention.
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0
x

0�

mirror

FIG. 4: The quantum uncertainty in the light trajectory, here depicted by fuzzing of the horizon,

is what we seek to compute via the quantum uncertainty in the geodesic distances parameterized

by Lg and � defined in the text. In particular 2� is the time shift, with respect to a classical

unperturbed trajectory, for a photon that is fired from the right boundary and reflected back to

its starting position.

to the JT theory, the original Minkowski causal diamond only covers a Poincaré patch as indicated

by the shaded regions in Fig. 3. However, by putting a mirror at x = 0 (i.e. the interface

between the two AdS sides), one can construct a geodesic that was fired from the right boundary at

(�⇡L/2, 1), reflected by the mirror at (0, 0), and arrives back at the right boundary at (⇡L/2, 1),

as indicated by the solid red line at the right panel of Fig. 3. This is simply the horizon of the

Minkowski causal diamond. Then, using reflection symmetry around x = 0 as discussed in the

previous paragraph, the distance traveled by this photon must be identical, in the absence of

quantum fluctuations, to the distance traveled by a photon fired from the left boundary and

eventually arrives at the right boundary, i.e. the two-sided AdS horizon. Then, 2� is precisely the

time shift, with respect to a classical unperturbed trajectory, for a photon that is fired from the

right boundary and reflected back to its starting position. This is illustrated in Fig. 4.

In this sense, the two-sided AdS serves as a mathematical trick (philosophically akin to the
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➤ Hydrodynamic effective theory / Goldstone modes 

➤ Multi-soft emission?
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➤ The “pixellon.” 

➤ Bosonic excitation modeling hydro mode
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compute fluctuations in the bulk (AdS) geometry. The
fluctuations of the modular Hamiltonian have been cal-
culated in the AdS bulk [8], with the result

β2〈∆K2〉 = A(Σ)

4G
. (2)

With suitable identifications, this result agrees with an
equivalent boundary calculation [9], and with the “ca-
pacity of entanglement” [10, 11]. This implies that, when
restricted to a finite part of the spacetime (defined by a
causal diamond with bifurcate horizon Σ), the vacuum
has energy fluctuations ∆K #= 0.
Eqs. (1), (2) together encourage an interpretation of

spacetime as bits of information, with the number N
of degrees-of-freedom in a given volume bounded by a
surface of area A given by the entanglement entropy

Sent = N =
A

4G
. (3)

This result can be interpreted in light of the fact that the
vacuum state of any QFT, restricted to a causal diamond,
is given by a thermal density matrix [12]

ρβ =
e−βK

Zβ
. (4)

For example, in a high-temperature system with
Maxwell-Boltzmann statistics, the root-mean-square
fluctuations of these N degrees-of-freedom is given by

√

〈∆K2〉
〈K〉 =

1√
N

, (5)

in agreement with Eqs. (1), (2). It was shown in Ref. [8]
that the fluctuations in the modular Hamiltonian, ∆K,
gravitate and hence, for certain observers, behave like a
mass, sourcing metric fluctuations.
It is not precisely known whether the vacuum state of

quantum gravity in ordinary flat space, when restricted
to a causal diamond, can be described by Eq. (4), and
whether the results derived for AdS/CFT apply to the
Universe we observe. There are reasons to think that
entropy, entanglement and their connection to geometry
are very generic concepts that apply to any spacetime,
including ours. Such ideas underly currents dating more
than twenty years on the entropic and holographic nature
of spacetime [6, 13, 14]. For example, it was shown in
Ref. [7] that taking fixed volume variations of the first
law of entanglement gives rise to the Einstein Equations.
In this letter we approach quantum gravity in flat space

in terms of observational signatures derived from a model
motivated by the known AdS/CFT results. If vacuum
fluctuations could be observed in an experiment consis-
tent with an entropic or thermal nature of the vacuum
state, this would be a leap forward in our understanding
of quantum gravity. To this end, we propose a simple
model for the degrees-of-freedom in the density matrix,
which we call pixellons because the excitations are asso-
ciated with each holographic pixel of a volume bounded

by an entangling surface of area A. More specifically, we
consider whether fluctuations in the spacetime degrees-
of-freedom of the density matrix Eq. (4) could be ob-
servable as fluctuations in the arm length of an inter-
ferometer. The two arms of an interferometer mark out
a (spherically symmetric) volume of spacetime with the
beamsplitter at the center of the volume and the mirrors
on the surface with area A; the interferometer measures
the geometric fluctuations in this volume.

The motivation for our pixellon Ansatz is as follows.
Based on the discussion of Eqs. (1)-(3), we interpret the
spacetime volume bounded by a surface of area A as
having N bits with total energy 〈K〉. The energy per
bit is then ω ∼ β−1 ∼ 1/L. However, it was shown
in Ref. [8] that 〈K〉 itself does not gravitate; rather the
fluctuations ∆K gravitate. From this point of view, 〈K〉
should be treated as a chemical potential counting the
background degrees-of-freedom, and the energy per exci-
tation is βω = ∆K/K = 1/

√
N & 1. We assume the

low-energy excitations will be bosonic; this is appropri-
ate because, as we will see below, they are associated
with a gravitational potential. Because the energy of
these bosonic degrees-of-freedom is so low, βω & 1, they
will form a high-occupation-number bosonic state. We
further show that such low-energy bosonic excitations of
the vacuum, when gravitationally coupled to test masses,
may give rise to observably large fluctuations of the mir-
ror positions in an interferometer.

The detailed outline of our proposal is as follows. In
the next section we introduce the bosonic excitations as
vacuum fluctuations, and we suggest that these bosonic
fluctuations be associated with a scalar gravitational po-
tential. In the following section, we propose that these
scalar degrees-of-freedom have a Bose-Einstein density-
of-states and a high occupation number due to their low
energy. Then, we gravitationally couple the pixellons to
a test mass whose position fluctuates due to the boson
fluctuations. We utilize the Feynman-Vernon influence
functional–a path integral realization of the fluctuation-
dissipation theorem–to compute the size of those fluc-
tuations. We will conclude that vacuum fluctuations
from a thermal density matrix can give rise to interfer-
ometer mirror position fluctuations that appear as noise
with a peculiar angular correlation, a smoking gun signa-
ture. Note that while the experimental system of interest
for measuring metric fluctuations, an interferometer, and
the motivation derived from the discussion surrounding
Eqs. (1)-(5), is the same as Ref. [8, 15], the models op-
erationally share no overlap. We will nevertheless find a
very similar effect, perhaps suggesting dual languages to
describe the vacuum state of quantum gravity.

Pixellons and Vacuum Fluctuations. As out-
lined in the introduction, excitations of the degrees-of-
freedom, associated with the entanglement entropy of a
finite volume of space, we refer to as pixellons. We expect
that pixellons are complicated non-linear states of all the
degrees-of-freedom available in the complete theory. Our
goal is to describe a consistent low-energy theory based

Number of bits or “pixels”
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We model vacuum fluctuations in quantum gravity with a scalar field, characterized by a high

occupation number, coupled to the metric. The occupation number of the scalar is given by a

thermal density matrix, whose form is motivated by fluctuations in the vacuum energy, which have

been shown to be conformal near a light-sheet horizon. For the experimental measurement of interest

in an interferometer, the size of the energy fluctuations is fixed by the area of a surface bounding

the volume of spacetime being interrogated by an interferometer. We compute the interferometer

response to these “geontropic” scalar-metric fluctuations, and apply our results to current and future

interferometer measurements, such as LIGO and the proposed GQuEST experiment.

I. INTRODUCTION

Traditional wisdom in e↵ective field theory (EFT) sug-

gests that quantum fluctuations in the fabric of spacetime

should be of the order of ⇠ lp =
p

8⇡G~/c3 ⇠ 10�34 m,

where G, ~, c, and lp are the gravitational constant, re-

duced Planck constant, speed of light, and Planck length

respectively. Fluctuations on such small time and length

scales are experimentally undetectable.

It has, however, been recently argued in multiple di↵er-

ent contexts that the length scale L of the physical system

itself may enter into the observable [1–6] (see Ref. [7] for

a summary)

*✓
�L

L

◆2
+

⇠ lp

L
, (1)

where �L is the quantum fluctuation of L. For example,

in Refs. [1, 4], L is the length of interferometer arm in flat

spacetime. More generally, L can be the size of a causal

diamond in dS, AdS, and flat spacetime [2, 3]. These

works argued that the naive EFT reasoning is corrected

by long-range correlations in the metric fluctuations–such

as are known to occur in holography–which allow the UV

fluctuations to accumulate into the infrared. A physi-

cal analogue is Brownian motion (discussed in Ref. [7])

where the interactions occur at very short distances but

⇤ dlli@caltech.edu
† szehiml@caltech.edu
‡ yanbei@caltech.edu
§ kzurek@caltech.edu

become observable on long timescales as the UV e↵ects

accumulate.

While the calculations presented in Refs. [1–5] are

firmly grounded in standard theoretical techniques, such

as AdS/CFT, they have not yet provided important, de-

tailed experimental information, such as the power spec-

tral density. This was the motivation behind the model

of Ref. [4], to provide a framework that reproduces im-

portant behaviors of the UV-complete theory while also

allowing to calculate detailed signatures in the infrared.

In the language of the Brownian motion model, while the

fluctuations arise from local interactions, the observable

is only defined globally. In the language of an interferom-

eter experiment, one cannot measure spacetime fluctua-

tion within a portion of an interferometer arm length, but

must wait for a photon to complete a round trip before

making a measurement of the global length fluctuation

across the entire arm.

In this work, we continue along the lines of Ref. [4],

utilizing a scalar field coupled to the metric to model

the behavior of the spacetime fluctuations proposed in

Refs. [1–5]. In particular, we propose a model in four di-

mensions, where the metric appears as a breathing mode

of a sphere controlled by a scalar field �:

ds
2 = �dt

2 + (1 � �)(dr
2 + r

2
d⌦2) . (2)

Since � e↵ectively controls the area of a spherical sur-

face, it is thus proportional to the entropy of a causal

diamond, and may be identified with the dilaton mode

studied in Refs. [3, 5]. In the model we consider, � is a

scalar field whose quantum fluctuations will be charac-
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based on fluctuations in the modular Hamiltonian K

K =

Z

B
Tµ⌫⇣

µ
KdB

⌫
, (4)

where B is some spatial region with a stress tensor Tµ⌫ ,

dB
⌫ is the volume element of B (with dB

⌫ pointing in

the time direction), and ⇣
µ
K is the conformal Killing vec-

tor of the boost symmetry of ⌃, the entangling surface

between B and its complement B̄ [2, 8]. One can map B

to Rindler space, so ⌃ is also a Rindler horizon. In the

context of AdS/CFT, where Tµ⌫ is the stress tensor of the

boundary CFT, both the vacuum expectation value and

the fluctuations of the modular Hamiltonian are known

to obey an area law in vacuum [2, 9, 10]

hKi = h�K
2i =

A(⌃)

4G
, (5)

where A(⌃) is the area of ⌃. One tempting interpretation

of this relation is that hKi ⌘ N counts the number of

gravitational bits, or pixels, in the system, which is fur-

ther motivated by the fact that the entanglement entropy

Sent = hKi is known to hold in a CFT. The fluctuations

of those N bits then satisfy “root-N” statistics:

|�K|
hKi =

1p
N

, (6)

where |�K| =
p

h�K2i represents the amplitude of the

modular fluctuation.

While the precise relation hKi = h�K
2i is demon-

strated only in the context of AdS/CFT, one can place

a Randall-Sundrum brane in the (5-d) bulk of AdS, in-

ducing gravity on the (flat 4-d) RS brane, and show that

Eq. (5) holds on the 4-d brane [3]. The measuring appara-

tus can then be placed on the flat 4-d brane. Further, as

shown in [3, 11, 12], gravity is approximately conformal

near the horizon. For an interferometer, the light beams

are probing the near-horizon geometry of the spherical

entangling surface ⌃ bounding it (shown in Fig. 1), so

Ref. [3] argued that the correlator of stress tensor takes

the same form as any CFT. Thus, h�K
2i follows Eq. (5),

i.e.,

h�K
2i ⇠

Z
d
2yd

2y0 dr dr
0
r r

0

((r � r0)2 + (y � y0)2)4

⇠ A

Z
dr dr

0
r r

0

(r � r0)6
⇠ A

�2
⇠ A

l2p

, (7)

where y denotes the transverse directions (correspond-

ing to the coordinates on ⌃), and G ⇠ �
2 corresponds

to a UV cut-o↵ in the theory at a distance scale � ⇠ lp.

In our case, r � r
0 ⇠ � corresponds to the distance to

the (unperturbed) spherical entangling surface ⌃ in our

setup shown in Fig. 1. A similar relation holds for hKi.
More generally, as found in [13], an area law for entan-

glement entropy does not hold only for a CFT but also

any massless scalar QFT, which also motivates the scalar

model of geoentropic fluctuations in [4] and this work.

The idea of Ref. [4] was thus to model the gravitational

e↵ects of modular fluctuations with a massless scalar

field, dubbed a “pixellon.” Since pixellons are bosonic

scalars, their creation and annihilation operators (a, a
†)

satisfy the usual commutation relation

⇥
ap1 , a

†
p2

⇤
= (2⇡)3�(3)(p1 � p2) . (8)

We are interested in modeling the impact of the (fluctu-

ating) e↵ective stress tensor in Eq. (13). We will do this

by allowing for a non-zero occupation number �pix(p),

Tr
�
⇢pixa

†
p1

ap2

�
= (2⇡)3�pix(p1)�

(3)(p1 � p2) (9)

such that

Tr
�
⇢pix{ap1 , a

†
p2

}
�

= (2⇡)3 [1 + 2�pix(p1)] �
(3)(p1�p2) .

(10)

The occupation number should be consistent with the

modular energy fluctuation, Eq. (6), as we will check ex-

plicitly at the end of this section.

The pixellon couples to the metric and sources the

stress tensor at second order in perturbations. In gen-

eral, we can consider a metric of the form

gµ⌫ = ⌘µ⌫ + ✏hµ⌫ + ✏
2
Hµ⌫ + ... , (11)

where ✏ is a dimensionless parameter that denotes the or-

der in perturbation theory. The vacuum Einstein Equa-

tion (EE) is, parametrically [14],

Gµ⌫ = ✏
⇥
r2

h
⇤
µ⌫

+✏
2
⇣⇥

r2
H
⇤
µ⌫

� l
2
pTµ⌫

⌘
+... = 0 , (12)

where the precise form of the equations of motion (e.g.,

numerical prefactors in the time and spatial derivatives)

will depend on the precise form of the metric that we

consider below, and where the e↵ective stress tensor is

2

terized by its occupation number, which we label as �pix.

The subscript denotes “pixellon” following the proposal

of Ref. [4], referring to the pixels of spacetime whose fluc-

tuations the scalar field is modeling.

In particular, the quantum fluctuations of the scalar,

since they couple to the metric, will give rise to fluc-

tuations in the round-trip time for a photon to tra-

verse from mirror to mirror in an interferometer, as de-

picted in Fig. 1. Similar to Ref. [4], our main goal is to

compute the gauge invariant interferometer observable

arising from the metric Eq. (2), with � being a scalar

field having a high occupation number. In contrast to

Ref. [4], which calculated length fluctuations utilizing the

Feynman-Vernon influence functional in a single inter-

ferometer arm, we will use only linearized gravity and

the QFT of a scalar field with a given occupation num-

ber. We will thus be able to extend the previous work

in Ref. [4], calculating both the power spectral density

and angular correlations in the interferometer arms in a

manifestly gauge invariant way, checking previous claims

made in Ref. [1], as well as making new predictions. Note

that while the model is not yet uniquely derived from

first principles in the ultraviolet (utilizing for example

shockwave geometry [6]), we will argue below that it is

nevertheless well-motivated from first principles.

More specifically, we consider an interferometer with

two arms of equal length L, i.e., with spherical symmetry,

and separated by angle ✓, as depicted in Fig. 1. We

assume that the first arm as the reference beam points

in the direction n1, and the second arm as the signal

beam points in the direction n2. We will find that the

observable takes the form:

⌧
�T (t1,n1)�T (t2,n2)

4L2

�

=
l
2
p

4L2

Z L

0
dr1

Z L

0
dr2

Z
d
3p

(2⇡)3
�pix(p)

2!(p)
F(r1, r2, p, �x) ,

(3)

where �T (t,n) denotes the fluctuation of time delay of

light beam sent at time t � L along the direction n, and

p = (!,p), �x = (�t, �x) are four-vectors. The main

object of interest in this paper is F(r1, r2, p, �x), which

encapsulates the response of the interferometer gravita-

tionally coupled to the scalar field �.

The rest of the paper is organized around deriving

Eq. (3). In Sec. II, we review the pixellon scalar field

FIG. 1. Setup of the interferometer.

model, with an occupation number �pix motivated in par-

ticular by [4], but also by work demonstrating that the

e↵ect of interest is a breathing mode of the horizon [3, 5].

We then couple this scalar field to the Einstein-Hilbert

action and derive its equation of motion. In Sec. III, we

perform a linearized gravity calculation and derive the

observable. In particular, we compute the interferom-

eter response function F(r1, r2, p, �x) from our specific

model. In Sec. IV, we compute the relevant power spec-

tral density and angular correlation from Eq. (3). We

then discuss various existing experimental constraints.

Finally, in Sec. V, we conclude. Throughout the paper

we will work in units ~ = c = kB = 1 while keeping the

gravitational constant G = l
2
p/(8⇡) explicit.

II. SCALAR FIELD QUANTUM

FLUCTUATIONS IN A CAUSAL DIAMOND

The main goal of this section is to motivate the form

of the scalar occupation number, �pix, that will be cou-

pled to the metric. Our discussion here is mostly based

on Ref. [4], though, as mentioned previously, it is also

broadly consistent with the dilaton model presented in

Ref. [3, 5].

The e↵ect of interest, as presented in Refs. [1, 2] is

Li, Lee, Chen, KZ 2209.07543



PIXELLON FROM MODULAR FLUCTUATIONS
➤ What is the density of states? 

➤ Pixellon is a scalar field (hydro) with thermal distribution 

➤ The pixellon characterizes vacuum fluctuations, so the energy 
per d.o.f. should be given by the modular fluctuation
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given by

Tµ⌫ ⇠ 1

l2p

⇥
(rh)2

⇤
µ⌫

. (13)

At leading order in perturbation theory, the metric per-

turbation hµ⌫ satisfies the vacuum EE having a form

⇥
r2

h
⇤
µ⌫

= 0 . (14)

However, at second order, the e↵ective stress tensor of

hµ⌫ will source a non-zero metric perturbation Hµ⌫ , i.e.,

⇥
r2

H
⇤
µ⌫

= l
2
pTµ⌫ . (15)

One can compute hKi from hTµ⌫i, but as shown in [2],

hKi does not gravitate and should be subtracted in the

metric equation of motion (similar to a tadpole dia-

gram in QFT). Thus, the vacuum expectation value of

this stress tensor vanishes, hTµ⌫i = 0, consistent with

Eqs. (13)-(14). In contrast, it is expected to have nonzero

fluctuations h�K
2i ⇠ hT↵�Tµ⌫i 6= 0, which gravitate and

lead to physical observables.

Although h�K
2i is directly related to the vacuum two-

point function of Hµ⌫ or four-point function of hµ⌫ , the

physical observable can be directly computed from the

two-point function of hµ⌫ with a nontrivial density-of-

states �pix. That is, we are using the language of lin-

earized gravity in this work, while our result captures

the nonlinearity in Eq. (15) and higher orders via �pix.

To compute the fluctuations, we quantize the metric per-

turbations via the scalar field �, which, to second order in

perturbation theory, leads to a nonzero h�K
2i, as shown

at the end of this section. The major goal of this work is

to compute the e↵ects of such quantized metric pertur-

bations on the interferometer depicted in Fig. 1.

More specifically, following Ref. [4], we model these

energy fluctuations, in the volume of spacetime interro-

gated with an interferometer, with a thermal density ma-

trix ⇢pix, as shown in Eqs. (9)-(10). The motivation for

this choice is based on formal work [8] showing that the

reduced density matrix ⇢V of the system V bounded by a

sphere S
d�1 or its casual development D can be mapped

to the thermal density matrix ⇢� of the hyperbolic space-

time R⇥H
d�1, which foliates AdSd+1, in the asymptotic

limit. A similar argument relating the vacuum state of

any QFT in a causal diamond to a thermal density ma-

trix can be found in [15].

Thus, following [4], we are motivated to define a ther-

mal density matrix ⇢pix of pixellons using the definition

in [16],

⇢pix =
1

Z exp


��

Z
d
3p

(2⇡)3
(✏p � µ)a†

pap

�
, (16)

Z =
Y

p

1

1 � e��(✏p�µ)
, (17)

where ✏p is the energy of pixellons with momentum p,

and µ is the chemical potential counting background de-

grees of freedom associated with hKi [4].

Furthermore, as in Ref. [4], we identify the energy per

degree-of-freedom as

�(✏p � µ) ⌘ �!(p) ⇠ |�K|
hKi . (18)

In four dimensions, according to Eq. (5),

|�K|
hKi =

1p
N

⇠ lp

L
, (19)

suggesting that the energy fluctuation per degree-of-

freedom is set by a ratio of UV and IR length scales.

Since lp
L ⌧ 1, we approximate the occupation number

�(p) by

�pix(p) =
1

e�!(p) � 1
⇡ 1

�!(p)
. (20)

More specifically, we identify the IR length scale 1/L ⇠
!(p), so we take

�pix(p) =
a

lp!(p)
, (21)

where a is the dimensionless number to be measured in

an experiment, or fixed in a UV-complete theory. Here

a = 1/(2⇡) corresponds to an inverse temperature � =

2⇡lp, giving a result most closely mirroring Refs. [1, 2, 4]

in amplitude.

Note that �pix(p) is not Lorentz invariant, but this is

to be expected because the measurement of interest via a

causal diamond picks out a frame. This is also not contra-

dictory to our statement that we have computed a gauge

invariant observable. It is because Lorentz transforma-

tions of �pix(p) are global transformations of background

Minkowski spacetime. After the interferometer picks a

frame, the interferometer response is independent of how

we describe metric perturbations, i.e., independent of lo-

<latexit sha1_base64="d5dy4MtWEtD/mZhCpvWfe/yQNa0="></latexit>

�!(p) ⇠ �|�K|
Sent

=
1p
Sent

4

given by

Tµ⌫ ⇠ 1

l2p

⇥
(rh)2

⇤
µ⌫

. (13)

At leading order in perturbation theory, the metric per-

turbation hµ⌫ satisfies the vacuum EE having a form

⇥
r2

h
⇤
µ⌫

= 0 . (14)

However, at second order, the e↵ective stress tensor of

hµ⌫ will source a non-zero metric perturbation Hµ⌫ , i.e.,

⇥
r2

H
⇤
µ⌫

= l
2
pTµ⌫ . (15)

One can compute hKi from hTµ⌫i, but as shown in [2],

hKi does not gravitate and should be subtracted in the

metric equation of motion (similar to a tadpole dia-

gram in QFT). Thus, the vacuum expectation value of

this stress tensor vanishes, hTµ⌫i = 0, consistent with

Eqs. (13)-(14). In contrast, it is expected to have nonzero

fluctuations h�K
2i ⇠ hT↵�Tµ⌫i 6= 0, which gravitate and

lead to physical observables.

Although h�K
2i is directly related to the vacuum two-

point function of Hµ⌫ or four-point function of hµ⌫ , the

physical observable can be directly computed from the

two-point function of hµ⌫ with a nontrivial density-of-

states �pix. That is, we are using the language of lin-

earized gravity in this work, while our result captures

the nonlinearity in Eq. (15) and higher orders via �pix.

To compute the fluctuations, we quantize the metric per-

turbations via the scalar field �, which, to second order in

perturbation theory, leads to a nonzero h�K
2i, as shown

at the end of this section. The major goal of this work is

to compute the e↵ects of such quantized metric pertur-

bations on the interferometer depicted in Fig. 1.

More specifically, following Ref. [4], we model these

energy fluctuations, in the volume of spacetime interro-

gated with an interferometer, with a thermal density ma-

trix ⇢pix, as shown in Eqs. (9)-(10). The motivation for

this choice is based on formal work [8] showing that the

reduced density matrix ⇢V of the system V bounded by a

sphere S
d�1 or its casual development D can be mapped

to the thermal density matrix ⇢� of the hyperbolic space-

time R⇥H
d�1, which foliates AdSd+1, in the asymptotic

limit. A similar argument relating the vacuum state of

any QFT in a causal diamond to a thermal density ma-

trix can be found in [15].

Thus, following [4], we are motivated to define a ther-

mal density matrix ⇢pix of pixellons using the definition

in [16],

⇢pix =
1

Z exp


��

Z
d
3p

(2⇡)3
(✏p � µ)a†

pap

�
, (16)

Z =
Y

p

1

1 � e��(✏p�µ)
, (17)

where ✏p is the energy of pixellons with momentum p,

and µ is the chemical potential counting background de-

grees of freedom associated with hKi [4].

Furthermore, as in Ref. [4], we identify the energy per

degree-of-freedom as

�(✏p � µ) ⌘ �!(p) ⇠ |�K|
hKi . (18)

In four dimensions, according to Eq. (5),

|�K|
hKi =

1p
N

⇠ lp

L
, (19)

suggesting that the energy fluctuation per degree-of-

freedom is set by a ratio of UV and IR length scales.

Since lp
L ⌧ 1, we approximate the occupation number

�(p) by

�pix(p) =
1

e�!(p) � 1
⇡ 1

�!(p)
. (20)

More specifically, we identify the IR length scale 1/L ⇠
!(p), so we take

�pix(p) =
a

lp!(p)
, (21)

where a is the dimensionless number to be measured in

an experiment, or fixed in a UV-complete theory. Here

a = 1/(2⇡) corresponds to an inverse temperature � =

2⇡lp, giving a result most closely mirroring Refs. [1, 2, 4]

in amplitude.

Note that �pix(p) is not Lorentz invariant, but this is

to be expected because the measurement of interest via a

causal diamond picks out a frame. This is also not contra-

dictory to our statement that we have computed a gauge

invariant observable. It is because Lorentz transforma-

tions of �pix(p) are global transformations of background

Minkowski spacetime. After the interferometer picks a

frame, the interferometer response is independent of how

we describe metric perturbations, i.e., independent of lo-
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FIG. 6. Strain comparison between model predictions (blue and green) and experimental / projection constraints (red). The
model curves are computed using Eqs. (44), (45), (59), (64) and (65) assuming ↵ = 1, while the experimental curves are
extracted from Refs. [25, 29–31]. The LIGO data shown here are obtained by the Livingston detector, but we note that the
Hanford detector yields similar constraints.

and

�� = 2!0Lh/c . (68)

In this way, the ��-referred spectrum is related to Sh

published by LIGO via

p
S�� =

2!0L

c

p
Sh . (69)

We note that at higher frequencies, and/or for interfer-

ometers with longer arms, the conversion from h to �
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wave geometry (e.g., see Refs. [6, 22–24]), a connection

we would like to study further in our future work.

One might also be interested in the amplitude c̃`m(!)

of each (`, m) mode of the power spectral density C̃(!, ✓).

Performing a Fourier transform of C(�t, ✓) in Eq. (53)

and thus a Fourier transform of A`m(�t, !, r1, r2) in

Eq. (52), we obtain

c̃`m(!) =
alp

2c3sL
2

Z L

0
dr1

Z L

0
dr2 A`m(0, !, r1, r2) . (56)

We have plotted c̃`m(!) starting from ` = 1 in Fig. 5.

To determine an analytical representation of the am-

plitude of each (`, m) mode, one can also look at

A`m(0, !, r1, r2) at the end points r1 = r2 = L. If we

integrate A`m(0, !, L, L) over !, we find the amplitude

of each (`, m) mode at end points to be

L

Z 1

0
d! A`m(0, !, L, L) =

⇡cs

2(2` + 1)
, (57)

which is the major contribution to c`m plotted in Fig. 4.

Although Eq. (57) decreases more slowly than Eq. (55)

over `, we have additional suppression due to, for ex-

ample, the factors of cos [!(L � r1,2)] in Eq. (52) when

integrating A`m(0, !, r1, r2) over ! and r1,2, so the total

amplitude in Eq. (54) is very close to Eq. (55) without

the IR regulator.

C. IR cuto↵

In this section, we apply the calculations in the previ-

ous two sections to the pixellon model with an IR cuto↵.

As discussed above, although both C̃(!, ✓) and C̃T (!, ✓)

are regular in the IR, we still expect an explicit IR cut-o↵

to enter the calculation because of the finite size of the

interferometer. We will also find that adding an IR cut-

o↵ gives a better agreement with the angular correlation

of Eq. (55). For this reason, we place an IR cuto↵ at a

scale ⇠ 1
L2 , similar to [1], into Eq. (41), e.g.,

C(�t, ✓) =
alp

8L2

Z L

0
dr1

Z L

0
dr2

Z
d
3p

(2⇡)3
1

!2(p) + 1
L2

cos [!(L � r1)] cos [!(L � r2)]e
�i!�t+ip·�x

.

(58)

Following the same procedure in Sec. IV A, we find

that the power spectral density C̃(!, ✓) in Eq. (44) is

FIG. 4. The amplitude of each (`,m) mode of the equal-
time correlation function C(0, ✓) decomposed into spherical
harmonics. The blue and green lines correspond to the am-
plitude in [1] [i.e., Eq. (55)] without and with an IR regulator,
respectively. The red and orange lines correspond to c`m [i.e.,
Eq. (54)] of the pixellon model without IR cuto↵ in Eq. (52)
and with an IR cuto↵ in Eq. (62), respectively. We have nor-
malized the amplitude of each mode by the amplitude of the
mode ` = 1.

modulated by an additional factor in ! and L, i.e.,

C̃(!, ✓) !
✓

!
2

!2 + 1
L2

◆
C̃(!, ✓) , (59)

while C̃T (!, ✓) is still given by Eq. (45). CT (0, ✓) and

C̃T (!, ✓) with this IR cuto↵ are shown in Figs. 2 and 3,

respectively.

One major e↵ect of the IR cuto↵ is that the ampli-

tude of C̃(!, ✓) is suppressed at low frequency due to the

modulation factor in Eq. (59), as one can directly observe

in Fig. 3. For the same reason, the overall amplitude of

CT (�t, ✓) in the case with an IR cuto↵ is smaller than the

one without IR cuto↵ as depicted in Fig. 2. As frequency

increases, the modulation factor goes to 1, so the ampli-

tude of C̃(!, ✓) in these two cases becomes nearly identi-

cal. In addition, as the separation angle ✓ decreases, the

di↵erence between these two cases also becomes smaller

since interferometers with smaller ✓ are more sensitive

to higher ` modes, which have higher characteristic fre-

quency, and thus are less sensitive to the IR cuto↵.

One can also determine the suppression factor due to
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and

�� = 2!0Lh/c . (68)

In this way, the ��-referred spectrum is related to Sh

published by LIGO via

p
S�� =

2!0L

c

p
Sh . (69)

We note that at higher frequencies, and/or for interfer-

ometers with longer arms, the conversion from h to �



➤ Fundamental uncertainty in light ray operators…

WHAT ARE WE TESTING?
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FIG. 1. A causal diamond. [KZ: We may need a new figure better adapted to this paper.]

horizons on the causal diamond shown in Fig. I:

X
v(y) = ˜̀2

p

Z
L

�L

du

Z
d
d�2

y
0
f(y, y0)Tuu(u, y

0) (1)

X
u(y) = ˜̀2

p

Z
L

�L

dv

Z
d
d�2

y
0
f(y, y0)Tvv(v, y

0), (2)

where Tuu, Tvv are the relevant components of the stress tensor, f(y, y0) is the Green function

of the Laplacian on the d � 2 transverse directions characterized by y. In the context of

the black hole S-matrix, ’t Hooft promoted these light ray operators to quantum objects by

postulating an uncertainty relation between ingoing and outgoing Hawking radiation:

hX
u(⌦)Xv(⌦0)i = l̃p

2
f(⌦,⌦0), (3)

where here we have used angular coordinates ⌦, ⌦0 to characterize the transverse direc-

tions on a black hole horizon. [KZ: Present this in terms of expectation value or

commutator? The latter is a more powerful statement.]

Upon inspection, these light sheet operators appear closely related to the modular Hamil-

tonian:

K =

Z

B

Tµ⌫⇠
µ
dB

⌫
, (4)

3

FIG. 2. We consider shockwave geometries of the type shown here, where vacuum fluctuations

Tuu(u, y) and Tvv(v, y) induce shifts in the light cone coordinates �v and �u on the lower and upper

half of the causal diamond, respectively.

to obtain the X
u equation of motion generates Ihorizon. We now describe each of these

contributions in turn.

For the unperturbed light trajectories, v is constant on the lower part, while u is constant

on the upper part. First let us concentrate on the lower part of the causal diamond. We

can then choose ⌧ = u, so that the action becomes

Ilower =

Z
d
d�2

y


� 1

`d�2
p

Z 0

�1
duX

u�y

dX
v

du
+

Z 0

�1
duX

u
Tuu

�
. (16)

Here we have assumed that the stress energy tensor is e↵ectively traceless, which in the

scaling regime appropriate for shockwave means that Tuv = 0. One easily verifies that by

varying X
u in the action Ilower one reproduces the correct shockwave equation for Xv

�y

dX
v

du
= `

d�2
p

Tuu. (17)

The other equation of motion obtained by varying X
v is also satisfied, since on this lower

trajectory dX
u
/du is a constant. When the equations of motion are satisfied one finds that

the integrand of the action integral, and hence the action Ilower itself, vanishes on-shell.

Similarly we define an action for the upper trajectory by interchanging the role of the u-

and v-coordinates and replacing X
u by X

v and vice versa. This gives

Iupper =

Z
d
d�2

y


1

`d�2
p

Z 1

0

dv X
v�y

dX
u

dv
+

Z 1

0

dv X
v
Tvv

�
(18)
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horizons on the causal diamond shown in Fig. I:

X
v(y) = ˜̀2

p

Z
L

�L

du

Z
d
d�2

y
0
f(y, y0)Tuu(u, y

0) (1)

X
u(y) = ˜̀2

p

Z
L

�L

dv

Z
d
d�2

y
0
f(y, y0)Tvv(v, y

0), (2)

where Tuu, Tvv are the relevant components of the stress tensor, f(y, y0) is the Green function

of the Laplacian on the d � 2 transverse directions characterized by y. In the context of

the black hole S-matrix, ’t Hooft promoted these light ray operators to quantum objects by

postulating an uncertainty relation between ingoing and outgoing Hawking radiation:

hX
u(⌦)Xv(⌦0)i = l̃p

2
f(⌦,⌦0), (3)

where here we have used angular coordinates ⌦, ⌦0 to characterize the transverse direc-

tions on a black hole horizon. [KZ: Present this in terms of expectation value or

commutator? The latter is a more powerful statement.]

Upon inspection, these light sheet operators appear closely related to the modular Hamil-

tonian:

K =

Z

B

Tµ⌫⇠
µ
dB

⌫
, (4)

3

Verlinde, KZ 2208.01059

where ⇠
µ is the conformal Killing vector that preserves the diamond, and B is a d � 1

dimensional sphere at fixed time corresponding to the bifurcate horizon. In the context of

AdS/CFT, the modular Hamiltonian K microscopically defines the density matrix ⇢ of the

CFT on the boundary obtained by tracing out the complement of the region via

⇢ =
e
�2⇡K

Z
with Z = tr

�
e
�2⇡K

�
. (5)

It has been shown, utilizing techniques from AdS/CFT [? ? ? ], that both the expectation

value of the modular Hamiltonian and its fluctuations are given by the Bekenstein-Hawking

area law:

hKi =
⌦
(�K)2

↵
=

A⌃

4G
, (6)

where A⌃ is the area of the bifurcate horizon. Furthermore, it was argued, utilizing tech-

niques from an Randall-Sundrum Braneworld, as well as the dimensional reduction of Solo-

dukhin [? ], that these relations apply also to the vacuum state in flat space.

The main purpose of this paper is to show that one can obtain these same relations, Eq. 6,

also via shockwave geometries in flat, empty space, if one posits the shockwave uncertainty

relations, Eq. 3. We find that hKi and h�K
2
i also have particular relations to the light ray

operators, Eq. 1.

hKi =
1
˜̀2
p

Z
hr⌦X

u(⌦)r⌦X
v(⌦)i dd�2⌦ (7)

⌦
(�K)2

↵
=

1
˜̀4
p

Z Z
hr⌦X

u(⌦)r⌦0X
v(⌦0)i hr⌦0X

u(⌦0)r⌦X
v(⌦)i dd�2⌦ d

d�2⌦0
, (8)

where here we have chosen to write the expressions in terms of the angular integrals on the

spherical entangling surface.

Because the light ray operators correspond to shifts in position observables, there is the

possibility that modular fluctuations could be observable. In fact, one can see that the

four-point of the position operator scales as `4
p
S, such that

D
@⌦X @⌦0X

E
⇠ `

2
p

r
A⌃

4G
⇠ 4⇡`pL. (9)

The outline of this paper is as follows. In the next section we review the ’t Hooft-Dray

shockwave set-up and the uncertainty relations that ’t Hooft posited as a result of the

formalism. In Sec. ?? we derive our main result, Eqs. 6, 8, from shockwave geometries.

Then in Sec. ?? we discuss how these shockwave geometries could give rise to observably

large fluctuations in the infrared.

4

This action leads, similarly as for the lower part, to the correct equations of motion and

vanishes on-shell, hence Iupper = 0 on-shell. However, we have neglected a surface term in

integrating by parts to obtain Eq. 18 from Eq. 14, which takes the form:

Ihorizon = � 1

`d�2
p

Z
d
d�2

y X
u(y)�yX

v(y), (19)

where we have denoted

X
v(y) ⌘ X

v(0, 0, y) and X
u(y) ⌘ X

u(0, 0, y).

We will now show that the on-shell action can also be identified with the modular Hamil-

tonianK. The argument is as follows. We will choose a new gauge where, instead of allowing

X
v and X

u to fluctuate, we fix X
v = 0 at u = �1 for the lower trajectory in the absence of

quantum fluctuations, and likewise Xu = 0 for v = 1 for the upper trajectory. This means

that on shell the first term in the action I vanishes. Hence, the total on shell action in that

case just becomes

Ion�shell =

Z
d
d�2

y

 Z 0

�1
duX

u
Tuu +

Z 1

0

dv X
v
Tvv

�
⌘ K (20)

The fields X
u and X

v can in fact be identified with the components of the Killing vector

associated with the Killing horizon.

Combining these two results leads then to an expression for the modular Hamiltonian K

in terms of the fluctuating shockwave variables Xu and X
v

K =
1

`d�2
p

Z
d
d�2

yryX
u(y)ryX

v(y) (21)

Here we rewrote the Laplacian as �y = r2
y
and performed a partial integration in the

transversal plane. This result for the modular Hamiltonian may appear somewhat unex-

pected, but one should see it first of all as an on-shell relation that makes use of the Einstein

equations to rewrite the stress energy in terms of the metric variables.

In the following section we will also use it as an operator identity. In particular we will

argue that the left and right hand side both have the same vacuum expectation value and

also exhibit the same fluctuations. A key ingredient in our derivation will be commutation

relations proposed by ’t Hooft in the context of black hole horizons. Here we apply them to

a bifurcate light sheet horizon.

9

sphere measured in Planck units. In fact, we will choose lmax so that the following identity

holds exactly

lmaxX

l=0

dimHl =
Area(L)

4G
(43)

where Area(L) denotes the area of a (d� 2)-sphere with radius L.

III. MODULAR ENERGY FLUCTUATIONS FROM SPHERICAL SHOCK WAVES

We now show that the two point correlation functions, Eq. 40, encapsulate fluctuations

in the modular Hamiltonian.

A. The modular Hamiltonian in terms of coordinate shifts

For this purpose we first need to write the analogue of the relations between the momen-

tum density and coordinate shifts for the spherical situations. We will define the momentum

density Pu(⌦) per unit angle via

Pu(⌦) = L
d�2

Z
L

�L

du Tuu(u,⌦) and Pv(⌦) = L
d�2

Z
L

�L

dv Tvv(v,⌦). (44)

The factor Ld�2 is inserted so that one obtains the complete momentum flux after integrating

over the angular coordinates ⌦, for instance,

P
tot

u
=

Z
d
d�2⌦Pu(⌦) = L

d�2

Z
d
d�2⌦

Z
L

�L

du Tuu. (45)

A similar equation holds for P tot

v
.

The modular Hamiltonian K can be identified with the Noether charge associated with

boost along the (Rindler) horizon. For an infinitesimal causal diamond, it takes the form

K = L
d�2

Z
d
d�2⌦du ⇠u(u,⌦)Tuu(u,⌦). (46)

Here [KZ: I think it’s premature to introduce this as it is not the same as the

CKV ⇠.]

X
u(u,⌦) = L� u+ �u(u,⌦). (47)

[KZ: Don’t see how the rest of this follows.] From Eq. 46, we can thus see that

the modular Hamiltonian can be expressed directly in terms of the coordinate shifts and the

12



WHAT ARE WE TESTING?
➤ And their Accumulation into Infrared
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Figure 1: Horizontal slices are FRW, hyperbolic slices are HST.

causal diamond. The HST model has a clear description of both particle and black hole
states, and the transitions between them. Section 3. is a review of the EHI cosmology and
its approximate SL(2) symmetry. The FRW description of this system is a good description
in the limit of large causal diamonds and the real system has no singularity. Section 4. is
the core of this paper. It describes the inflationary model, which we believe is relevant to
the universe we observe. We derive bounds on the maximum temperature of the universe,
which are related to the values of inflationary parameters. This model makes it very explicit
that one must choose low entropy initial conditions in order to have local excitations in the
universe. Further constraints come from insisting that the local excitations are more com-
plex than a few large black holes or the radiation from their decay. We call this excuse for
the low entropy initial conditions a topikès-thropic explanation, from the Greek word topikès
for local. We show that more refined versions of this argument put an upper bound on the
reheat temperature of the universe in the HST model in terms of parameters characterizing
the inflationary era. We also argue that in this framework the number of e-folds is essentially
given by an upper bound we announced some time ago [9]. In this section we also give a
brief review of observational signatures of this model. A more comprehensive paper about
the predictions for two and three point functions of fluctuations will appear shortly [?].

Section 4. also contains brief comments about baryogenesis in the HST model. Our bound
on the reheat temperature allows many conventional low energy mechanisms for baryogen-
esis, but rules out high scale leptogenesis. We also point out the possibility of producing
the baryon asymmetry during the era of black hole decay by applying anthropic arguments

4
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R

FIG. 3. An interferometer of arm length R traces out a series of nested causal diamonds, with each subsequent

diamond separated by the scrambling length �x0. In the left panel, the nested causal diamonds are shown

in position space, with each concentric sphere representing subsequent nested diamonds, while the right panel

depicts the nested diamonds in the xi � x0 plane.

where the d-dimensional Planck length is defined here by l
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As the light beam in the interferometer travels to the mirror at a distance R from the beam splitter,

it traverses a sequence of statistically uncorrelated causal diamonds, the number of which is N = R
�x0

.

The uncertainty in the length traversed, caused by fluctuations of the near-horizon degrees of freedom–

the pixellons of Ref. [21]–in each of these diamonds is of order �x0, so the total length traversed should

be thought of as a one dimensional random walk. We thus have

�R
2

' �x
2
0 N =

R
2

d � 2

1
p

S0
. (58)

This result is in agreement with the length fluctuations obtained in [20], computed via a topological

black hold foliation of a boundary-anchored diamond in AdS. These length fluctuations can be thought

of as the quantum width of the horizon of the causal diamond. In d = 4, this implies �R
2

⇠ lpR, an

observably large fluctuation as proposed in Ref. [19]. In higher dimensions, the e↵ect is suppressed by

higher powers of lp and would be unobservable.

Note that an important aspect of our picture is that the transverse directions do not experience these

length fluctuations, leaving the shape of the light cone intact. This is important phenomenologically,

because it implies that the images of stars do not become blurred over cosmological distances, a
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Figure 1: Horizontal slices are FRW, hyperbolic slices are HST.

causal diamond. The HST model has a clear description of both particle and black hole
states, and the transitions between them. Section 3. is a review of the EHI cosmology and
its approximate SL(2) symmetry. The FRW description of this system is a good description
in the limit of large causal diamonds and the real system has no singularity. Section 4. is
the core of this paper. It describes the inflationary model, which we believe is relevant to
the universe we observe. We derive bounds on the maximum temperature of the universe,
which are related to the values of inflationary parameters. This model makes it very explicit
that one must choose low entropy initial conditions in order to have local excitations in the
universe. Further constraints come from insisting that the local excitations are more com-
plex than a few large black holes or the radiation from their decay. We call this excuse for
the low entropy initial conditions a topikès-thropic explanation, from the Greek word topikès
for local. We show that more refined versions of this argument put an upper bound on the
reheat temperature of the universe in the HST model in terms of parameters characterizing
the inflationary era. We also argue that in this framework the number of e-folds is essentially
given by an upper bound we announced some time ago [9]. In this section we also give a
brief review of observational signatures of this model. A more comprehensive paper about
the predictions for two and three point functions of fluctuations will appear shortly [?].

Section 4. also contains brief comments about baryogenesis in the HST model. Our bound
on the reheat temperature allows many conventional low energy mechanisms for baryogen-
esis, but rules out high scale leptogenesis. We also point out the possibility of producing
the baryon asymmetry during the era of black hole decay by applying anthropic arguments
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EXPERIMENTAL MEASUREMENT OF THEORETICALLY ESTIMATED EFFECT

➤ Time dependence of the effect will determine the signatures

3

FIG. 1. GQuEST model spectral density as compared to
quantum noise. This is a model of the equivalent displacement
spectrum expected from the geontropic signal in a L=5m
Michelson interferometer, with 90degree angle between the arm.
The dashed line indicates the quantum shot noise contribution,p

S
D̂
, in amplitude spectral density units. Blue is the signal

model
p

�(⌦) with ↵ = 1.

This factor is later given by Eq. (83), and, for now, ex-
cludes considering classical noise. This relates the no-
tation S

D̂
= Psd[Qu] for this experiment. The opti-

cal gain is factorized into the mirror-displacement sensi-
tivity 2k and two factors-of-two reduction in sensitivity
from the beamsplitter, 1: reducing the arm power and
2: the signal power. These two factors represent that
the arms/endmirrors are the actual sensor in a Michelson
interferometer and that two measurements are needed to
perform a di↵erential comparison. Section III derives this
optical gain.

Fig. 1 Shows a representative spectrum that GQuEST
is targeting in its search. This spectrum has an analytical
description constructed in [5]. The signal is remarkably
small, with the scaling

� ⇡
✓
3·10�22 mp

Hz

◆2✓ L

5 m

◆2

(3)

The number of independent measurements of the fluc-
tuation of the Michelson fringe light (a form of homodyne
readout) required to resolve ↵ = 1 using a stochastic
search with an optimal statistic is later given by Eq. (74).
The inverse of the variance of the ↵-parameter estimator
corresponds to the square of the (amplitude) signal-to-
noise ratio “�S/N” which expresses the number of standard
deviations of significance. This number is

N1�
D̂

=
S2
D̂

(↵�)2
⇡ 1013 N1�

D̂
= �F

D̂
�T 1�

D̂
(4)

The applicable bandwidth must then be determined.
Experimental constraints on data processing can deter-
mine it, but fundamentally it is related to the optimally
weighted search statistic, built from Eq. (72) and devel-
oped in Appendix A3. These signals span an e↵ective
bandwidth determined by the signal model. Comparing,

Eq. (A9) with Eq. (74), The bandwidth is defined for for
the optimal statistic as:

�F
D̂

=

Z 1

0

✓
�(⌦)

�

◆2 d⌦

2⇡
⇡ c

4L
(5)

This assumes constant S
D̂

for white measurement noise
dominated by the the quantum shot noise of a broadband
Michelson. The approximation indicates the calculation,
under ideal conditions, for the geontropic signal of Fig. 1

The number of measurements over a given measurement
frequency band and observing time is given by the time-
bandwidth product, thus an expected measurement time
for a 1� measurement is

�T 1�
D̂

>
N1�

D̂

�F
D̂

⇡ 185 hr ·
✓
5 m

L

◆3✓10 kW

PBS

◆2

(6)

This indicates that the experiment is feasible to measure
3� level significance on the ↵ ⇠ 1 normalization of the
theory, but will struggle to achieve higher a statistical
power or equivalently attempt to measure and set limits
on ↵ < 1

3 . In practice, the signal is far to small below the
noise to properly subtract the shot-noise as a background,
thus two interferometers are needed and the data must
be cross correlated as derived in Section IVE. Using two
interferometers at the same power as above will cut the
measurement time in half.

FIG. 2. GQuEST signal sideband emission spectrum.
The model of Fig. 1 is converted into photon counts of the
signal. The signal modulates into both an upper (blue) and
lower (red) frequency sidebands. The dashed arrow in the
center indicates the carrier light frequency and the potential
for a large photopower from the residual Michelson fringe light.

A. Photon Counting

While homodyne readout will be utilized for the
GQuEST experiment, a new readout methodology for
Michelson interferometers will be developed and demon-
strated for this experiment, vastly improving the potential
of the Michelson interferometer. The new method is to
utilize photon counting as a means of directly measuring

L. Mcculler, 2211.04016



OTHER APPLICATIONS: SINGLE EXCITATION, LOW DARK COUNTS

▸ Axion-mediated optomechanical process
2
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Figure 1: Diagrams contributing to the e↵ective interaction.

Optical
frequency

!opt
' 2⇡ ⇥ 200 THz

(0.8 eV)

Mechanical
frequency

⌦m
' 2⇡ ⇥ 318 MHz

(1.4 µeV)

Free spectral
range

!FSR =
⇡

L

2⇡ ⇥ 150 MHz ⇤

(0.6 µeV ⇤)

Optical
loss rate

 =
⇡

LFopt

300 Hz ⇤

(2 ⇥ 10�13 eV ⇤)

Laser width L
1 Hz ⇤

(6.6 ⇥ 10�16 eV ⇤)

Mechanical
loss rate

�m =
⇡cs

LFac

24 mHz ⇤

(1.6 ⇥ 10�17 eV ⇤)

Optical
finesse

Fopt ⇡ ⇥ 106 ⇤

Acoustic
finesse

Fac ⇡ ⇥ 104 ⇤

Axion
bandwidth

�fa = v
2

2⇡
ma 2.7 ⇥ 10�7

ma

Table 1: Summary of the two axion regimes considered.
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Axion dark matter is predicted by generic models to couple to photons via

L � �ga��

1

4

Z
d
3
raF �F = �ga��

Z
d
3
ra �E · �B, (1)

where due to its low frequency/energy, the axion field can be treated classically as

a(�r, t) = a0 cos(�p · �r � !t) (2)

with momentum �p = ma�va and energy ! = ma.

ii

FIG. 1: Schematic of optical tones and sidebands of the axion signal (purple), and Stokes (red) and anti-Stokes
(blue) photons. Cavity resonance modes, with a free spectral range !FSR and cavity loss rate , are represented by
gray vertical lines. The axion mass probed is set by the o↵set of the photon frequency produced in the final state

from the Stokes peak. If interested in axion absorption onto populated photon final states, the axion mass probed is
set by the o↵set of the probe laser (tall purple peak with width L) from the Stokes peak, convoluted with the
energy distribution of the axion (set by the dark matter velocity distribution in the galaxy, shown as a dashed

purple peak). For axion absorption onto populated phonon final states, a filter (purple rectangle with width F ) is
centered around the cavity density of states, with optical resonance mode !n2 instead. There are two di↵erent mass

regimes shown: (a) the light axion regime ma . !FSR, where the Stokes and signal are close (in comparison to
!FSR); and (b) the heavy axion regime ma & !FSR, where the signal and Stokes photons are separated by more than

!FSR. The table summarizes relevant quantities with sample values, evaluated at a benchmark cavity length
L = 1m; those labeled with a star are strongly dependent on the experimental set-up.
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FIG. 2: Diagrams contributing to the e↵ective
interaction.

QCD axion coupling. We devote the rest of our letter

to computing the axioptomechanical rate, the signal-to-
noise ratio, and the theoretical reach of our idea to the
dark matter QCD axion or an axion like particle. In
the Supplemental Materials (SM) section, we give more
details of our results for the interested reader.

E↵ective Hamiltonian — The Hamiltonian describing
the e↵ective interaction shown in Fig. (2) is given by

He↵ = �
1

2
↵ ga��

Z
d
3r a(r) n(r)E(r) · B(r), (3)

where n(r) is the density of the material filling the cavity
and ↵ its polarizability. Quantizing this Hamiltonian, it
can be written as a function of the creation and annihi-
lation operators of the mechanical mode (b†

, b, acoustic
phonons), optical modes (a†

, a, cavity photons), and the
classical axion field amplitude a(t),

He↵ =
X

i,j,k

ga�� g
(0)
a

a(t)aia
†
j
b
†
k
, (4)

where the sum is over all integer mode numbers. g
(0)
a is

the optomechanical coupling in the presence of the axion
source, which depends on the momenta involved in the
process (see SM Sec. S.1 for a derivation):

g
(0)
a

= !opt
3

2

"r � 1

"r + 2

1

"r

s
|km|

2cs⇢Vmode
aovl, (5)

where Vmode = L
2
�opt/

p
✏r is the optical mode volume,

while ⇢, cs and "r are the density, speed of sound and
relative permittivity of the material filling the cavity, re-
spectively. For superfluid Helium at cryogenic temper-
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(b) Populated final state of phonons

tint = 1 s

tint = 103 s

FIG. 3: Theoretical sensitivity reach curves in the ga��-ma plane for cavity benchmarks with SNR = 3. (a)
Populated final state of photons. The probe laser width is taken to be L = 1 Hz and the integration time, tint = 1 s.
The numbers of circulating photons are fixed shown by the labels. (b) Populated final state of phonons. The phonon

number is chosen according to the density perturbation limit of the superfluid Helium. We show di↵erent
benchmarks for possible dark count rates, assuming then that tint & ��1

DCR. In the sub-panel of plot (a), we show
sensitivities (red) for individual measurements with a spacing �, with the reach curve (black) defined by the

intersection between successive measurements.

of a QCD axion with a Planckian decay constant.
The scanning rate is limited by the laser width
L ⇠ 1 Hz ⇠ 10�15 eV, such that for an integra-
tion time tint = 1 s on each mass point one covers
approximately 20 neV/year in axion mass, which is
su�cient for covering the light axion regime not al-
ready constrained by stellar cooling. In the regime
where the integration time is longer than the coher-
ent times of the axion and the laser, the dependence
on ma of the axion photon coupling changes from

ga�� / m
3/4
a below 5 neV to / m

3/2
a , with the tran-

sition between the two scalings occurring when the
axion width is of the same size as the laser width,
�fa ⇠ 2L.

(b) Populated final state of phonons. The more in-
teresting case is to populate the final state with
phonons, where the detection strategy is now to
observe single photons from the axion-induced pro-
cess. Rather than be limited by laser shot noise,
one is limited instead by dark count rates of the
single photon detector, as well as photons in the
tail of the background tones discussed above. Here
we assume the optimistic scenario in which the
background is dominated by the dark count rate
of the detector, which is an irreducible source of
noise. Because the laser tails are more easily fil-

tered with greater separation in frequency from the
pump, we focus on the heavy axion case, specif-
ically ma & !FSR. Importantly, in this regime
the axion mass becomes significant in the phase
matching condition, such that one needs to tune
the frequency of the coherent phonons, ⌦m, with
the axion mass according to Eq. (9). The num-
ber of phonons is limited by the density fluctua-
tions in the material, which we require to satisfy
�⇢He/⇢He < 10�3. For more details, we point the
reader to SM S.4. In this regime, the axion co-
herence time is always shorter than tint, and the

reach curve scales as ga�� / m
3/2
a (ma) for �fa

broader (narrower) than , as discussed in SM S.5.
For tint = 1 s, one could cover about two orders of
magnitude in axion mass over a one year observing
time, while for tint = 103 s, a mass window about
4% of the mass could be scanned with 10 cavities
simultaneously taking data over a year. This setup
is promising to detect the QCD axion band. Spe-
cific choices of inputs and data-taking times can be
optimized to scan a specific window, according to
the scaling of the parameters and scanning strate-
gies that we have presented here (see SM S.5).

Generically, the sensitivity is dominantly driven by
how many photons and phonons can be maintained in

the cavity. High photon numbers will require strong laser
power, large optical finesse and long cavities, as shown in



MOTIVATION:POWER IN LOW-ELL
➤ Time delay comes from dilaton fluctuations, which is 

literally the radius of the      that has been integrated out  

➤ Only gives s-wave and no PSD information 

➤ Gives relation between modular fluctuation and K from 
famous “square-root E” partition function
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where we have used the bulk equation of motion and the dilaton value at the boundary. The

Euclidan version of the boundary condition outlined below Eq. (28) is
p

�̃ =
p

�̃tEtE = rc/L. The

unit vector normal to the boundary r = rc is ñ
µ = (0,

p
r2 � r2s/L). Hence, the extrinsic curvature

in Eq. (47) is given by

K̃1 = r̃µñ
µ
|r=rc
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µ
|r=rc

=
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L

rcp
r2c � r2s

=
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L
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where we used
p

g̃ = 1 in the second line. Finally, putting Eq. (50) and Eq. (48) into Eq. (49), the

action becomes6

�IE = 4⇡
2
L

�b

�
. (51)

The thermal partition function evaluated at the saddle-point is given by

Z[�] = e
�IE

= e
4⇡2L�b/� . (52)

This allows to compute the energy and the entropy

hEi = �@� log Z[�] =
1

L

�2

h

�b

S = log Z[�] + �hEi = 4⇡�h . (53)

Here we see the direct connection between the entropy and the value of the dilaton at the horizon.

We can get the leading correction to the saddle-point via

Z [�] ⇡

Z 1

0

dELe
S(EL)��EL ⇡

Z 1

0

dELe
4⇡

p
L�bEL��EL . (54)

This is the famous “square-root E” behavior of the density of states that appears in many systems.

It was shown in Ref. [2] that this density of states gives rise to the relation �
2
@
2

� log Z [�] =

��@� log Z [�] + log Z [�], which corresponds to h�K
2
i = hKi [3, 4] in the language of AdS/CFT.

This also directly follows from the relation log Z ⇠ �
�1 at the saddle-point as indicated in Eq. (52).

6
To obtain a finite result in Eq. (49), we need to add a holographic renormalization counterterm

�(2/L)
R
@M̃2

dx0p��̃1�, similar to the one in Ref. [17] where the Schwarzian action is derived from the JT

action, but with a di↵erent boundary condition.
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PIXELLON FROM MODULAR FLUCTUATIONS
➤ Modular Fluctuations act as quantum source in Einstein 

equation, but it enters non-linearly in the perturbations 

➤ At leading order, Vacuum EE 

➤ At next order, sourced by modular fluctuations
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based on fluctuations in the modular Hamiltonian K

K =

Z

B
Tµ⌫⇣

µ
KdB

⌫
, (4)

where B is some spatial region with a stress tensor Tµ⌫ ,

dB
⌫ is the volume element of B (with dB

⌫ pointing in

the time direction), and ⇣
µ
K is the conformal Killing vec-

tor of the boost symmetry of ⌃, the entangling surface

between B and its complement B̄ [2, 8]. One can map B

to Rindler space, so ⌃ is also a Rindler horizon. In the

context of AdS/CFT, where Tµ⌫ is the stress tensor of the

boundary CFT, both the vacuum expectation value and

the fluctuations of the modular Hamiltonian are known

to obey an area law in vacuum [2, 9, 10]

hKi = h�K
2i =

A(⌃)

4G
, (5)

where A(⌃) is the area of ⌃. One tempting interpretation

of this relation is that hKi ⌘ N counts the number of

gravitational bits, or pixels, in the system, which is fur-

ther motivated by the fact that the entanglement entropy

Sent = hKi is known to hold in a CFT. The fluctuations

of those N bits then satisfy “root-N” statistics:

|�K|
hKi =

1p
N

, (6)

where |�K| =
p

h�K2i represents the amplitude of the

modular fluctuation.

While the precise relation hKi = h�K
2i is demon-

strated only in the context of AdS/CFT, one can place

a Randall-Sundrum brane in the (5-d) bulk of AdS, in-

ducing gravity on the (flat 4-d) RS brane, and show that

Eq. (5) holds on the 4-d brane [3]. The measuring appara-

tus can then be placed on the flat 4-d brane. Further, as

shown in [3, 11, 12], gravity is approximately conformal

near the horizon. For an interferometer, the light beams

are probing the near-horizon geometry of the spherical

entangling surface ⌃ bounding it (shown in Fig. 1), so

Ref. [3] argued that the correlator of stress tensor takes

the same form as any CFT. Thus, h�K
2i follows Eq. (5),

i.e.,

h�K
2i ⇠

Z
d
2yd

2y0 dr dr
0
r r

0

((r � r0)2 + (y � y0)2)4

⇠ A

Z
dr dr

0
r r

0

(r � r0)6
⇠ A

�2
⇠ A

l2p

, (7)

where y denotes the transverse directions (correspond-

ing to the coordinates on ⌃), and G ⇠ �
2 corresponds

to a UV cut-o↵ in the theory at a distance scale � ⇠ lp.

In our case, r � r
0 ⇠ � corresponds to the distance to

the (unperturbed) spherical entangling surface ⌃ in our

setup shown in Fig. 1. A similar relation holds for hKi.
More generally, as found in [13], an area law for entan-

glement entropy does not hold only for a CFT but also

any massless scalar QFT, which also motivates the scalar

model of geoentropic fluctuations in [4] and this work.

The idea of Ref. [4] was thus to model the gravitational

e↵ects of modular fluctuations with a massless scalar

field, dubbed a “pixellon.” Since pixellons are bosonic

scalars, their creation and annihilation operators (a, a
†)

satisfy the usual commutation relation

⇥
ap1 , a

†
p2

⇤
= (2⇡)3�(3)(p1 � p2) . (8)

We are interested in modeling the impact of the (fluctu-

ating) e↵ective stress tensor in Eq. (13). We will do this

by allowing for a non-zero occupation number �pix(p),

Tr
�
⇢pixa

†
p1

ap2

�
= (2⇡)3�pix(p1)�

(3)(p1 � p2) (9)

such that

Tr
�
⇢pix{ap1 , a

†
p2

}
�

= (2⇡)3 [1 + 2�pix(p1)] �
(3)(p1�p2) .

(10)

The occupation number should be consistent with the

modular energy fluctuation, Eq. (6), as we will check ex-

plicitly at the end of this section.

The pixellon couples to the metric and sources the

stress tensor at second order in perturbations. In gen-

eral, we can consider a metric of the form

gµ⌫ = ⌘µ⌫ + ✏hµ⌫ + ✏
2
Hµ⌫ + ... , (11)

where ✏ is a dimensionless parameter that denotes the or-

der in perturbation theory. The vacuum Einstein Equa-

tion (EE) is, parametrically [14],

Gµ⌫ = ✏
⇥
r2

h
⇤
µ⌫

+✏
2
⇣⇥

r2
H
⇤
µ⌫

� l
2
pTµ⌫

⌘
+... = 0 , (12)

where the precise form of the equations of motion (e.g.,

numerical prefactors in the time and spatial derivatives)

will depend on the precise form of the metric that we

consider below, and where the e↵ective stress tensor is
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turbation hµ⌫ satisfies the vacuum EE having a form
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pTµ⌫ . (15)

One can compute hKi from hTµ⌫i, but as shown in [2],

hKi does not gravitate and should be subtracted in the

metric equation of motion (similar to a tadpole dia-

gram in QFT). Thus, the vacuum expectation value of

this stress tensor vanishes, hTµ⌫i = 0, consistent with

Eqs. (13)-(14). In contrast, it is expected to have nonzero

fluctuations h�K
2i ⇠ hT↵�Tµ⌫i 6= 0, which gravitate and

lead to physical observables.

Although h�K
2i is directly related to the vacuum two-

point function of Hµ⌫ or four-point function of hµ⌫ , the

physical observable can be directly computed from the

two-point function of hµ⌫ with a nontrivial density-of-

states �pix. That is, we are using the language of lin-

earized gravity in this work, while our result captures

the nonlinearity in Eq. (15) and higher orders via �pix.

To compute the fluctuations, we quantize the metric per-

turbations via the scalar field �, which, to second order in

perturbation theory, leads to a nonzero h�K
2i, as shown

at the end of this section. The major goal of this work is

to compute the e↵ects of such quantized metric pertur-

bations on the interferometer depicted in Fig. 1.

More specifically, following Ref. [4], we model these

energy fluctuations, in the volume of spacetime interro-

gated with an interferometer, with a thermal density ma-

trix ⇢pix, as shown in Eqs. (9)-(10). The motivation for

this choice is based on formal work [8] showing that the

reduced density matrix ⇢V of the system V bounded by a

sphere S
d�1 or its casual development D can be mapped

to the thermal density matrix ⇢� of the hyperbolic space-

time R⇥H
d�1, which foliates AdSd+1, in the asymptotic

limit. A similar argument relating the vacuum state of

any QFT in a causal diamond to a thermal density ma-

trix can be found in [15].

Thus, following [4], we are motivated to define a ther-

mal density matrix ⇢pix of pixellons using the definition
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where ✏p is the energy of pixellons with momentum p,

and µ is the chemical potential counting background de-

grees of freedom associated with hKi [4].

Furthermore, as in Ref. [4], we identify the energy per
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suggesting that the energy fluctuation per degree-of-

freedom is set by a ratio of UV and IR length scales.

Since lp
L ⌧ 1, we approximate the occupation number

�(p) by

�pix(p) =
1
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⇡ 1
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. (20)

More specifically, we identify the IR length scale 1/L ⇠
!(p), so we take

�pix(p) =
a

lp!(p)
, (21)

where a is the dimensionless number to be measured in

an experiment, or fixed in a UV-complete theory. Here

a = 1/(2⇡) corresponds to an inverse temperature � =

2⇡lp, giving a result most closely mirroring Refs. [1, 2, 4]

in amplitude.

Note that �pix(p) is not Lorentz invariant, but this is

to be expected because the measurement of interest via a

causal diamond picks out a frame. This is also not contra-

dictory to our statement that we have computed a gauge

invariant observable. It is because Lorentz transforma-

tions of �pix(p) are global transformations of background

Minkowski spacetime. After the interferometer picks a

frame, the interferometer response is independent of how

we describe metric perturbations, i.e., independent of lo-
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we describe metric perturbations, i.e., independent of lo-



COMPARISON OF EXPERIMENTS
➤ LISA is not sensitive, but other future ground-based 

experiments will be overwhelmed by this signal
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FIG. 6. Strain comparison between model predictions (blue and green) and experimental / projection constraints (red). The
model curves are computed using Eqs. (44), (45), (59), (64) and (65) assuming ↵ = 1, while the experimental curves are
extracted from Refs. [25, 29–31]. The LIGO data shown here are obtained by the Livingston detector, but we note that the
Hanford detector yields similar constraints.

and

�� = 2!0Lh/c . (68)

In this way, the ��-referred spectrum is related to Sh

published by LIGO via

p
S�� =

2!0L

c

p
Sh . (69)

We note that at higher frequencies, and/or for interfer-

ometers with longer arms, the conversion from h to �

Figure 6: Pixellon strain overlaid with the strain sensitivity for the Einstein Telescope (triangular).
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EQUIVALENT PHYSICAL DESCRIPTIONS — CELESTIAL HOLOGRAPHY

➤ ’t Hooft commutation relations are equivalent to BMS 
commutations relations appearing in celestial holography

He, Raclariu, KZ in progress

rL

t

2nd
mirror

1st
mirror

FIG. 1. A causal diamond. [KZ: We may need a new figure better adapted to this paper.]

horizons on the causal diamond shown in Fig. I:

X
v(y) = ˜̀2

p

Z
L

�L

du

Z
d
d�2

y
0
f(y, y0)Tuu(u, y

0) (1)

X
u(y) = ˜̀2

p

Z
L

�L

dv

Z
d
d�2

y
0
f(y, y0)Tvv(v, y

0), (2)

where Tuu, Tvv are the relevant components of the stress tensor, f(y, y0) is the Green function

of the Laplacian on the d � 2 transverse directions characterized by y. In the context of

the black hole S-matrix, ’t Hooft promoted these light ray operators to quantum objects by

postulating an uncertainty relation between ingoing and outgoing Hawking radiation:

hX
u(⌦)Xv(⌦0)i = l̃p

2
f(⌦,⌦0), (3)

where here we have used angular coordinates ⌦, ⌦0 to characterize the transverse direc-

tions on a black hole horizon. [KZ: Present this in terms of expectation value or

commutator? The latter is a more powerful statement.]

Upon inspection, these light sheet operators appear closely related to the modular Hamil-

tonian:

K =

Z

B

Tµ⌫⇠
µ
dB

⌫
, (4)

3

metric to these modes, it is useful to focus on the outgoing modes and consider the shockwave
metric

ds2 = �du2
� 2du dr + 2r2�zz̄dz dz̄ +

�
2@zXu du dz + c.c.

�
. (4.2) {lc-met}

We want to show that there exists a diffeo that transforms (4.2) to the AS metric (3.1).
Starting with huu, we have

0 = h0
uu = huu � 2@u⇠u =) cf(z, z̄)�(u� u0) = 2@u⇠u

=) ⇠u =
c

2
f(z, z̄)⇥(u� u0).

(4.3)

To obtain the transverse components huz, we have

@zXu = h0
uz = huz � @u⇠z � @z⇠u

=) @u⇠z = �
c

2
@zf(z, z̄)⇥(u� u0)� @zXu.

(4.4)

If we assume ⇠z = 0, then we obtain the relation

Xu = �
c

2
f(z, z̄)⇥(u� u0). (4.5) {X-f_relation}

Combining this with (3.13), we see that we can identify the outgoing mode Xu as

Xu = �(DzDz + 1)C(z, z̄). (4.6) {Xu1}

Next, to identify the conjugate mode N(z, z̄), we note that the supertranslation generated
by the spherical shell shifts Czz by

LfCzz = D2
zC(z, z̄) = �2D2

zf =) f = C(z, z̄). (4.7) {f-gen}

It follows by (2.4) and (2.10) that N(z, z̄) is given by

�Xv = �Xu = �C(z, z̄) = ��C(z, z̄) =
1

2
N(z, z̄). (4.8) {Xv1}

Thus, we see that (4.6) parametrizes the supertranslation due to a shockwave localized in
the u coordinate, and (4.8) is the resultant coordinate shift of such a supertranslation.

It follows we have4

[Xu(z, z̄),�Xv(w, w̄)] =


�DzDzC(z, z̄)� C(z, z̄),

1

2
N(w, w̄)

�

= �
1

2

�
DzDz + 1)

�
8iGS log |z � w|2

�

= �4iG
�
DzDz + 1)

�
S log |z � w|2

�
.

(4.9) {XuXvComm}

4Xv is identified with u + �u from [4], so �Xv is identified with �u, which is the “operator” part of Xv

and the part with the nontrivial commutation relation with Xu.
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modes, and can be intuitively thought of as arising from high-energy scattering between
such particles near the black hole horizon [elaborate more?]. Surprisingly, we find that for
a propagating spherical shell in asymptotically flat spacetime, if we interpret the outgoing
mode as the shock and the ingoing mode as the resultant shift along the shock, then the
commutation relation arising from the asymptotic symmetry analysis exactly reproduces
the ’t Hooft commutation relation. This equivalence has far-reaching consequences, since
it was recently used in the derivation of how metric perturbations due to quantum effects
can be related to fluctuations of the modular Hamiltonian, which can potentially give rise
to observational signatures [4].

The organization of this paper is as follows. In Section 2, we give a quick overview of the
asymptotic symmetry analysis pertaining to asymptotically flat spacetimes. In Section 3,
we describe the spherical shell using the spherical version of the Aichelburg-Sexl metric,
and demonstrate that it can be recast as an asymptotically flat metric in Bondi gauge. This
allows us to determine the asymptotic data (and their commutation relations upon canonical
quantization) of the spacetime. In particular, we derive the supertranslation that generates
the memory effect associated to such a spherical shock. In Section 4, we demonstrate how
the ’t Hooft commutation relation arises from the commutators involving the asymptotic
data. We make some concluding remarks and speculate on future directions in Section 5
[only if necessary?].

2 Asymptotically flat spacetimes

sec:bms

The metric for an asymptotically flat spacetime can be written in Bondi gauge as (for a
review see [1] and references therein)

ds2 = �du2 + 2du dr + 2r2�zz̄dz dz̄

+
2mB(u, z, z̄)

r
du2 +

�
rCzz(u, z, z̄)dz

2 + c.c.
�
+
�
DzCzz(u, z, z̄)du dz + c.c.

�
+ · · · ,

(2.1) {bondi-met2}

where u = t � r, mB is the Bondi mass aspect, �zz̄ = 2

(1+zz̄)
2 is the round metric on the

celestial sphere, and Dz the covariant derivative with respect to �zz̄. The nonzero Christofel
symbols on the sphere are

�z
rz =

1

r
, �z

zz = �
2z̄

1 + zz̄
, �u

zz̄ = r�zz̄, �r
zz̄ = �r�zz̄. (2.2)

The news tensor captures the radiative modes and is defined to be

Nzz(u, z, z̄) = @uCzz(u, z, z̄). (2.3) {Ndef}

2

for some unconstrained field N(z, z̄). From (2.8), it follows

�2�C(z, z̄) = N(z, z̄). (2.10) {Ndef}

We conclude the brief review of asymptotically flat spacetimes with the commutators
between the fields in the asymptotic data. These were worked out in [6] and are given to be
(quantum commutators [·, ·] are related to Dirac brackets via i{·, ·})2

[Cz̄z̄(u, z, z̄), Cww(u
0, w, w̄)] = 8⇡iG�zz̄⇥(u� u0)�2(z � w)

[C(z, z̄), Cww(u
0, w, w̄)] = 4iGD2

w

�
S log |z � w|2

�

[N(z, w̄), Cww(u
0, w, w̄)] = 16iGD2

w

�
S log |z � w|2

�

[N(w, w̄), C(z, z̄)] = �8iGS log |z � w|2

(2.11) {CN-com}

where

S ⌘
(z � w)(z̄ � w̄)

(1 + zz̄)(1 + ww̄)

D2
w

�
S log |z � w|2

�
=

S

(z � w)2

D2
z̄D

2
w

�
S log |z � w|2

�
= ⇡�zz̄�

2(z � w).

(2.12) {S-identity}

3 Deriving the memory effect

sec:memory

We begin with a spherical shell that is described using a metric resembling the Aichelburg-
Sexl metric for planar waves [There is log term in AS metric that we’re not including here?]:
[also fix Appendix A to reformulate planar coordinates as spherical coordinates] [use different
notation for f in hµ⌫ and f as generator of supertranslation]

ds2 = �du2
� 2du dr + 2r2�zz̄dz dz̄ + cf(z, z̄)�(u� u0)du

2

| {z }
hµ⌫

. (3.1) {AS-met}

[This seems to be exactly the same as the metric in eg. [7]. However, note that while it
naively seems to obey the Bondi gauge conditions grr = grA = 0 and @rdet

�
r�2gAB

�
= 0,

it is not a solution to the Einstein equations in Bondi gauge. Bondi gauge instead fixes the
metric to take the form []

ds2 = e2�
V

r
du2 + �AB(dx

A
� UAdu)(dxB

� UBdu)� 2e2�dudr. (3.2)

2
Our commutation relations involving C differs from those in [6] by a factor of �2 due to our conventions;

see footnote 1.

4

Bondi

Aichelburg-Sexl

’t Hooft

BMS



WHY DON’T YOU JUST DO A SEMICLASSICAL CALCULATION?
➤ Of what? Highly non-local observable. 

➤ Propose length operator 

➤ Compute two-point function of length operator 

➤ Leading contribution to 2-pt is 4-pt in length fluctuations 

H = p
2

R
dx |xi hx|

G(x1, x2) =

Z
1

0

d⇤

Z
x(⇤)=x2

x(0)=x1

D[x]e�i
R ⇤
0 d�L[�]

,

L = ⌘µ⌫ ẋ
µ
ẋ
⌫
.

x
µ(�) = x

µ

cl
(�) + q

µ(�) =
�

⇤
(x2 � x1)

µ + q
µ(�),

q(0) = q(⇤) = 0

ẋ
µ(�) =

1

⇤
(x2 � x1)

µ + q̇
µ(�).

R ⇤

0 d�q̇
µ = 0

L =
(x2 � x1)2

⇤2
+ q̇

2
,

G(x1, x2) =

Z
1

0

d⇤e�iẋ
2
cl

Z
x(⇤)=x2

x(0)=x1

D[x]e�i
R ⇤
0 d�q̇

2
.

ẋcl �

SEH = 1
GN

R
R

gµ⌫ = ⌘µ⌫ + hµ⌫  =
p
GN S =

R
gµ⌫ ẋ

µ
ẋ
⌫

G(x1, x2) =

Z
1

0

d⇤

Z q(⇤)=0
h(x2)=0

q(0)=0
h(x1)=0

D[q, h]e�i
R ⇤
0 d�(⌘µ⌫+hµ⌫)(q̇µq̇⌫+ẋ

µ
clẋ

⌫
cl)+

1
2

R
.

p
�g

hµ⌫ q̇
µ
q̇
⌫

L ⌘
Z

ds ⌘
Z

d�
p
gµ⌫ ẋ

µẋ⌫ ,

where L(v) is the geodesic length from u = �1 to u = 1 at fixed v. If there are no metric
fluctuations, the geodesic between two null points is null and hence its length is 0.

Because the null trajectory between the two heavy operators is a geodesic, the geodesic
length of the null path is a minimum and hence is invariant to first order under first order
variations in the path, i.e.

�L(v)

�x
µ = 0, (1.2)

where �x
µ parametrizes a fluctuation of the path. We claim that to model the metric

fluctuations, instead of fixing the path and varying the underlying metric, we can view
the metric as being fixed and vary the path.1 In fact, if we want to apply the eikonal
approximation, where we model the two null trajectories as  propagators and the graviton
exchanges as metric fluctuations, then the effect of the graviton exchanges is to change the
position (and hence the trajectory) and not the underlying metric (in QFT the background
metric is fixed).

Applying the above reasoning, this means along the null geodesic between two heavy  
operators, first order path fluctuations do not result in first order length fluctuation, and so
writing

L = L
(0) + ✏L

(1) + ✏
2
L
(2)
, (1.3)

where ✏ is a small parameter keeping track of the order, we have along a null trajectory �

the operator equalities [check]

L
(0)
|� = 0, L

(1)
|� = 0. (1.4) {null-props}

Thus, using (1.1) and (1.4), we compute the 4-point function involving two pairs of null-
1This appears to be a passive versus active viewpoint, but it seems that a first order metric variation

induces a first order length variation of a geodesic, as can be seen in (10) of 1904.11344 with d = 1. My
suspicion is that a first order metric fluctuation allows for longitudinal metric fluctuation along the geodesic
and hence changes the path length (if metric fluctuations were perpendicular to the path I think (1) in
1904.11344 vanishes). Luckily for us, I think the metric fluctuations generated by shockwaves are indeed
transverse to the null trajectory.

2
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