

Caltech

SIGNATURES OF QUANTUM GRAVITY
 Summary: 2205.01799
 Work with:

Kathryn Zurek

QUANTUM GRAVITY

—> FLUCTUATIONS IN SPACETIME

OLD VIEW: VISIBLE ONLY AT ULTRASHORT DISTANCES

$$
l_{p} \sim 10^{-35} \mathrm{~m} \sim 10^{-43} \mathrm{~s}
$$

BROWNIAN NOISE

> UV Effects Can be Transmuted to the Infrared

$$
\begin{array}{ll}
\left\langle x^{2}\right\rangle=2 D T \\
D \sim \Delta t & \text { Observing time } \\
\text { UV Scale } & \text { IR Scale }
\end{array}
$$

BROWNIAN NOISE

> UV Effects Can be Transmuted to the Infrared

$$
\left\langle x^{2}\right\rangle=2 D T \sim N \Delta t^{2}
$$

$N=$ number of times a typical particle interacts

$$
N=\frac{T}{\Delta t}^{\prime} \quad \Delta x \sim \sqrt{N} \Delta t
$$

Diffusion is simply "Random walk" or "Root N" statistics

QUANTUM GRAVITY

—> FLUCTUATIONS IN SPACETIME

NEW VIEW: NON-LOCALITY AND ENTANGLEMENT PLAY AN IMPORTANT ROLE IN QG

EXAMPLE: PHYSICS AT BLACK HOLE HORIZONS

PHYSICS AT THE HORIZON

> Physics at horizons enters front and center into holography and QG
> Some naive EFT/ perturbative reasoning breaks down at the horizon
> UV / IR mixing seems important

- EFT vastly overcounts degrees-offreedom of a spacetime volume bounded by surface of area A
> Entanglement between these degrees of freedom - inside and outside horizon - seems to be important

THE QUANTUM WIDTH OF A (BH) HORIZON

> Degrees-of-freedom ("pixels") can fluctuate

$$
\delta R \underset{d=4}{\sim} \sqrt{l_{p} R}
$$

In any number of dimensions:

$$
\delta R^{2} \sim \frac{R^{2}}{\sqrt{S_{\mathrm{BH}}}}
$$

Marolf 2003

HORIZONS

> An Experimental measurement defines a horizon

Black Hole Horizon

Cosmological Horizon

Flat Space Horizon

HORIZONS AND EXPERIMENTS

> An experimental measurement defines a horizon
> Consider light beams of an interferometer

- Traces out a causal diamond

WHAT LENGTH FLUCTUATION CAN BE MEASURED?

$$
\delta L(t)=\frac{1}{2} \int_{0}^{L} d z h(t+z-L)
$$

Modern Interferometer Set-Up:
\Rightarrow Strain $\sim \frac{\delta L}{L} \sim 10^{-20}$

$$
\delta L \sim \sqrt{l_{p} L}
$$

Parametrically the same as the black hole uncertainty

BLACK HOLE - (EMPTY!) CAUSAL DIAMOND DICTIONARY

Black Hole

> Horizon

- Black Hole Temperature
- Black Hole Mass
- Thermodynamic free energy
> Entropy

Causal Diamond

> Horizon Defined by Null Rays
> Size of Causal Diamond

$$
T \sim 1 / L
$$

> Modular Fluctuation

$$
M=\frac{1}{2 \pi L}(K-\langle K\rangle) \quad K=\int_{B} T_{\mu \nu} \zeta_{K}^{\mu} d B^{\nu}
$$

> Partition Function

$$
F=-\frac{1}{\beta} \log \operatorname{tr}\left(e^{-\beta K}\right)
$$

- Entanglement Entropy

$$
S=\langle K\rangle=\frac{A}{4 G}
$$

PHYSICS AT HORIZONS — BH VS EMPTY SPACE

> As long as we are interested in only the
E. Verlinde, KZ 1902.08207 part of spacetime inside the causal diamond, the metric in some common spacetimes can be mapped to "topological black hole"

$$
d s^{2}=d u d v+d y^{2}
$$

$$
d s^{2}=-f(R) d T^{2}+\frac{d R^{2}}{f(R)}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

$$
f(R)=1-\frac{R}{L}+2 \Phi
$$

1. Calculate fluctuations in the energy of the vacuum
A. In AdS/CFT this can be calculated with no assumptions.
B. In Minkowski space, we have made a case that the same relations hold. Banks, KZ 2108.04806
A. Interferometer on flat RS brane
B. Dimensional reduction of flat E-H
 action to dilaton gravity a la Solodukhin
2. Calculate length fluctuation from vacuum energy fluctuation $\delta L \sim \sqrt{l_{p} L}$

1) CALCULATE VACUUM FLUCTUATION

> Number of holographic degrees of freedom is the entropy

$$
S=\frac{A}{4 G_{N}}=\frac{8 \pi^{2} R^{2}}{l_{p}^{2}}
$$

- Each d.o.f. has temperature set by size of volume

$$
T=\frac{1}{4 \pi R}
$$

> Statistical argument:

$$
\Delta M \sim \sqrt{S} T=\frac{1}{\sqrt{2} l_{p}}
$$

2) VACUUM FLUCTUATION SOURCES METRIC FLUCTUATION

$$
\Phi(L)=-\frac{l_{p}^{2} \Delta M}{8 \pi L}
$$

$$
\Phi \sim h_{u u} h_{v v} \sim \frac{\delta L^{2}}{L^{2}}
$$

ONE MOUNTAIN, MANY FACES

G. Celestial CFT

w/ He, Raclariu in progress
H. Effective Model- pixellon
F. 2-d Models, e.g. JT
gravity w/Gukov, Lee 2205.02233
Zurek 2012.05870
w/Li, Lee, Chen 2209.07543
A. AdS/CFT
w/Verlinde 1911.02018
B. Light Ray Operators / Shockwaves
w/Verlinde, 2208.01059

E. Hydrodynamics EFT
w/Zhang in progress
D. 4-pt correlators
w / He,
Sivaramakrishnan
in progress
C. Gravitational effective action /

EXPERIMENTAL MEASUREMENT OF THEORETICALLY ESTIMATED EFFECT

> Gravity from the Quantum Entanglement of SpaceTime

U.S. DEPARTMENT OF

ENERGY
Office of Science

THE QURIOS COLLABORATION

Parikh, particle theory / gravity, ASU

Verlinde, string theory / emergent gravity, UvA

Zurek, particle theory / Effective field theory \& QG, Caltech

Giddings, quantum gravity / black holes, UCSB

Freivogel, string theory / cosmology \& early universe, UvA

Keeler, string theory / fluid-gravity, ASU
Chen, astrophysics / gravitational waves \& precision measurement, Caltech

Caltech nimmanornamaman

HEISING-SIMONS FOUNDATION

THE QURIOS COLLABORATION

> Inaugural Heising-Simons Fellows

Lars Aalsma

Claire Zukowski

Temple He

Allic Sivaramakrishnan

Ana-Maria Raclariu

Dominik Neuenfeld

MOTIVATION: EXPERIMENTAL MEASUREMENT OF THEORETICALLY ESTIMATED EFFECT

> Theory is generically predictive: amplitude (and angular correlations, assuming symmetric geometry)
> Theory is not yet powerful enough to give power spectral density

$$
S(\omega, t)=\int_{-\infty}^{\infty} d \tau\left\langle\frac{\delta L(t)}{L} \frac{\delta L(t-\tau)}{L}\right\rangle e^{-i \omega \tau}
$$

> which corresponds to being able to correlate two causal diamonds

MOTIVATION: ASSUMING POWER IN LOW-ELL MODES

> e.g. w/ Gukov, Lee: in near horizon limit, 4-d Einstein-Hilbert action dimensionally reduces to Jackiw-Teitelboim gravity in 2-d on class of spherically symmetric metrics

$$
d s^{2}=\frac{\rho^{2}}{L^{2}}\left(\frac{L^{2}}{\rho^{2}} g_{a b} d x^{a} d x^{b}+L^{2} d \Omega_{2}^{2}\right)
$$

$$
\begin{aligned}
I_{\mathrm{EH}} & =\frac{1}{16 \pi G_{N}} \int_{M_{4}} d^{4} x \sqrt{-g_{4}} R_{4} \\
I_{\mathrm{GHY}} & =\frac{1}{8 \pi G_{N}} \int_{\partial M_{4}} d^{3} x \sqrt{-\gamma_{3}} K_{3}
\end{aligned}
$$

MOTIVATION: ASSUMING POWER IN LOW-ELL MODES

> e.g. w/ Gukov, Lee: in near horizon limit, 4-d Einstein-Hilbert action dimensionally reduces to Jackiw-Teitelboim gravity in 2-d on class of spherically symmetric metrics

MOTIVATION: ASSUMING POWER IN LOW-ELL MODES

> e.g. w/ Gukov, Lee: in near horizon limit, 4-d Einstein-Hilbert action dimensionally reduces to Jackiw-Teitelboim gravity in 2 -d on class of spherically symmetric metrics

$$
I=\int_{\tilde{M}_{2}} d^{2} x \sqrt{-\tilde{g}_{2}} \Phi\left(\tilde{R}_{2}+\frac{2}{L^{2}}\right)+2 \int_{\partial \tilde{M}_{2}} d x^{0} \sqrt{-\tilde{\gamma}_{1}} \Phi \tilde{K}_{1}
$$

MOTIVATION: JT SOLUTION

- JT gravity reduces to 1d QM problem that can be solved exactly
> Two-sided geometry allows us to track one clock w.r.t. other

$$
\Omega=d \delta \wedge d H=d L_{g} \wedge d P
$$

Harlow and Jafferis 1804.01081

$$
-I_{E}=\text { constant }-\frac{S}{16 L^{2}}\left(L_{g}-L_{g, \text { peak }}\right)^{2}
$$

$$
\Delta T_{\text {r.t. }}^{2}=\frac{l_{p} L}{\pi}
$$

EQUIVALENT PHYSICAL DESCRIPTIONS

> The formalism will become powerful enough to calculate everything for experiment from first principles

- We already have several handles that will help us compute all information, but these calculations are not complete
> Wilson loop / worldlines
> Hydrodynamic effective theory / Goldstone modes
- Multi-soft emission?

EQUIVALENT PHYSICAL DESCRIPTIONS - A MODEL FOR PHENO

> The "pixellon."
> Bosonic excitation modeling hydro mode

$$
d s^{2}=-d t^{2}+(1-\phi)\left(d r^{2}+r^{2} d \Omega^{2}\right)
$$

$\operatorname{Tr}\left(\rho_{\mathrm{pix}} a_{\mathbf{p}_{1}}^{\dagger} a_{\mathbf{p}_{2}}\right)=(2 \pi)^{3} \sigma_{\mathrm{pix}}\left(\mathbf{p}_{1}\right) \delta^{(3)}\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right)$

$$
S_{\mathrm{ent}}=\mathcal{N}=\frac{A}{4 G}
$$

PIXELLON FROM MODULAR FLUCTUATIONS

- What is the density of states?
- Pixellon is a scalar field (hydro) with thermal distribution

$$
\sigma_{\mathrm{pix}}(\mathbf{p})=\frac{1}{e^{\beta \omega(\mathbf{p})}-1} \approx \frac{1}{\beta \omega(\mathbf{p})}
$$

> The pixellon characterizes vacuum fluctuations, so the energy per d.o.f. should be given by the modular fluctuation

$$
\beta \omega(\mathbf{p}) \sim \frac{\beta|\Delta K|}{S_{\mathrm{ent}}}=\frac{1}{\sqrt{S_{\mathrm{ent}}}} \quad \sigma_{\mathrm{pix}}(\mathbf{p})=\frac{a}{l_{p} \omega(\mathbf{p})}
$$

EQUIVALENT PHYSICAL DESCRIPTIONS — A MODEL FOR PHENO

> Distinctive Angular Correlations Predicted already in VZ1

> Consistent with LIGO and Holometer data
Li, Lee, Chen, KZ 2209.07543

WHAT ARE WE TESTING?

- Fundamental uncertainty in light ray operators...

$$
X^{u}(u, \Omega)=L-u+\delta u(u, \Omega)
$$

$$
\begin{aligned}
& X^{v}(y)=\tilde{\ell}_{p}^{2} \int_{-L}^{L} d u \int d^{d-2} y^{\prime} f\left(y, y^{\prime}\right) T_{u u}\left(u, y^{\prime}\right) \\
& X^{u}(y)=\tilde{\ell}_{p}^{2} \int_{-L}^{L} d v \int d^{d-2} y^{\prime} f\left(y, y^{\prime}\right) T_{v v}\left(v, y^{\prime}\right)
\end{aligned}
$$

$$
\left\langle X^{u}(\Omega) X^{v}\left(\Omega^{\prime}\right)\right\rangle=\tilde{l}_{p}^{2} f\left(\Omega, \Omega^{\prime}\right)
$$

$$
I_{o n-\text { shell }}=\int d^{d-2} y\left[\int_{-\infty}^{0} d u X^{u} T_{u u}+\int_{0}^{\infty} d v X^{v} T_{v v}\right] \equiv K
$$

$$
\langle K\rangle=\left\langle(\Delta K)^{2}\right\rangle=\frac{A_{\Sigma}}{4 G}
$$

WHAT ARE WE TESTING?

> And their Accumulation into Infrared

$$
\delta R^{2} \simeq \delta x_{0}^{2} \mathcal{N}=\frac{R^{2}}{d-2} \frac{1}{\sqrt{S_{0}}}
$$

QUANTUM GRAVITY IN THE INFRARED — UV IN THE IR

Concrete theoretical and experimental directions to determine observability of VZ effect G. Celestial CFT

w/ He, Raclariu in progress

H. Effective Model- pixellon

Zurek 2012.05870

F. 2-d Models, e.g. JT
gravity w/Gukov, Lee 2205.02233
C. Gravitational effective action / saddle point expansion

EXPERIMENTAL MEASUREMENT OF THEORETICALLY ESTIMATED EFFECT

- Time dependence of the effect will determine the signatures

OTHER APPLICATIONS: SINGLE EXCITATION, LOW DARK COUNTS

- Axion-mediated optomechanical process

MOTIVATION:POWER IN LOW-ELL

> Time delay comes from dilaton fluctuations, which is literally the radius of the S^{2} that has been integrated out
> Only gives s-wave and no PSD information

- Gives relation between modular fluctuation and K from famous "square-root E" partition function

$$
Z[\beta] \approx \int_{0}^{\infty} d E_{L} e^{S\left(E_{L}\right)-\beta E_{L}} \approx \int_{0}^{\infty} d E_{L} e^{4 \pi \sqrt{L \Phi_{b} E_{L}}-\beta E_{L}}
$$

$$
\langle E\rangle=-\partial_{\beta} \log Z[\beta]=\frac{1}{L} \frac{\Phi_{h}^{2}}{\Phi_{b}}
$$

$S=\log Z[\beta]+\beta\langle E\rangle=4 \pi \Phi_{h}$

$$
\left\langle\Delta K^{2}\right\rangle=\langle K\rangle
$$

PIXELLON FROM MODULAR FLUCTUATIONS

> Modular Fluctuations act as quantum source in Einstein equation, but it enters non-linearly in the perturbations

$$
\begin{gathered}
g_{\mu \nu}=\eta_{\mu \nu}+\epsilon h_{\mu \nu}+\epsilon^{2} H_{\mu \nu}+\ldots \\
G_{\mu \nu}=\epsilon\left[\nabla^{2} h\right]_{\mu \nu}+\epsilon^{2}\left(\left[\nabla^{2} H\right]_{\mu \nu}-l_{p}^{2} T_{\mu \nu}\right)+\ldots=0 \\
T_{\mu \nu} \sim \frac{1}{l_{p}^{2}}\left[(\nabla h)^{2}\right]_{\mu \nu}
\end{gathered}
$$

> At leading order, Vacuum EE $\left[\nabla^{2} h\right]_{\mu \nu}=0$
> At next order, sourced by modular fluctuations $\left[\nabla^{2} H\right]_{\mu \nu}=l_{p}^{2} T_{\mu \nu}$

PIXELLON FROM MODULAR FLUCTUATIONS

- Stress tensor vanishes in vacuum, but it does have flucts.

$$
\left\langle T_{\mu \nu}\right\rangle=0 \quad\left\langle\Delta K^{2}\right\rangle \sim\left\langle T_{\alpha \beta} T_{\mu \nu}\right\rangle \neq 0
$$

> So leading effect enters as two point of T , or four-point of h
> Rather than compute four-point of h , can compute two-point of h with non-trivial density of states

COMPARISON OF EXPERIMENTS

> LISA is not sensitive, but other future ground-based experiments will be overwhelmed by this signal

EQUIVALENT PHYSICAL DESCRIPTIONS — CELESTIAL HOLOGRAPHY

> 't Hooft commutation relations are equivalent to BMS commutations relations appearing in celestial holography

$$
\left\langle X^{u}(\Omega) X^{v}\left(\Omega^{\prime}\right)\right\rangle=\tilde{l}_{p}^{2} f\left(\Omega, \Omega^{\prime}\right) \quad \text { 't Hooft }
$$

Aichelburg-Sexl $d s^{2}=-d u^{2}-2 d u d r+2 r^{2} \gamma_{z \bar{z}} d z d \bar{z}+\left(2 \partial_{z} X_{u} d u d z+\right.$ c.c. $)$

Bondi $\quad d s^{2}=-d u^{2}+2 d u d r+2 r^{2} \gamma_{z \bar{z}} d z d \bar{z}$

$$
+\frac{2 m_{B}(u, z, \bar{z})}{r} d u^{2}+\left(r C_{z z}(u, z, \bar{z}) d z^{2}+\text { c.c. }\right)+\left(D^{z} C_{z z}(u, z, \bar{z}) d u d z+\text { c.c. }\right)+\cdots,
$$

$$
\left[C(z, \bar{z}), C_{w w}\left(u^{\prime}, w, \bar{w}\right)\right]=4 i G D_{w}^{2}\left(S \log |z-w|^{2}\right) \quad B M S
$$

He, Raclariu, KZ in progress

WHY DON'T YOU JUST DO A SEMICLASSICAL CALCULATION?

> Of what? Highly non-local observable.

- Propose length operator

$$
L \equiv \int d s \equiv \int d \lambda \sqrt{g_{\mu \mu} \dot{x}^{\mu} \dot{x}^{\nu}}
$$

> Compute two-point function of length operator
> Leading contribution to 2-pt is 4-pt in length fluctuations

$$
L=L^{(0)}+\epsilon L^{(1)}+\left.\epsilon^{2} L^{(2)} \quad L^{(0)}\right|_{\gamma}=0,\left.\quad L^{(1)}\right|_{\gamma}=0
$$

